Optimization of Energy Systems

Optimization of Energy Systems PDF

Author: Ibrahim Dinçer

Publisher: John Wiley & Sons

Published: 2017-05-15

Total Pages: 469

ISBN-13: 111889443X

DOWNLOAD EBOOK →

An essential resource for optimizing energy systems to enhance design capability, performance and sustainability Optimization of Energy Systems comprehensively describes the thermodynamic modelling, analysis and optimization of numerous types of energy systems in various applications. It provides a new understanding of the system and the process of defining proper objective functions for determination of the most suitable design parameters for achieving enhanced efficiency, cost effectiveness and sustainability. Beginning with a general summary of thermodynamics, optimization techniques and optimization methods for thermal components, the book goes on to describe how to determine the most appropriate design parameters for more complex energy systems using various optimization methods. The results of each chapter provide potential tools for design, analysis, performance improvement, and greenhouse gas emissions reduction. Key features: Comprehensive coverage of the modelling, analysis and optimization of many energy systems for a variety of applications. Examples, practical applications and case studies to put theory into practice. Study problems at the end of each chapter that foster critical thinking and skill development. Written in an easy-to-follow style, starting with simple systems and moving to advanced energy systems and their complexities. A unique resource for understanding cutting-edge research in the thermodynamic analysis and optimization of a wide range of energy systems, Optimization of Energy Systems is suitable for graduate and senior undergraduate students, researchers, engineers, practitioners, and scientists in the area of energy systems.

Modeling, Analysis and Optimization of Process and Energy Systems

Modeling, Analysis and Optimization of Process and Energy Systems PDF

Author: F. Carl Knopf

Publisher: John Wiley & Sons

Published: 2011-12-14

Total Pages: 798

ISBN-13: 1118121147

DOWNLOAD EBOOK →

Energy costs impact the profitability of virtually all industrial processes. Stressing how plants use power, and how that power is actually generated, this book provides a clear and simple way to understand the energy usage in various processes, as well as methods for optimizing these processes using practical hands-on simulations and a unique approach that details solved problems utilizing actual plant data. Invaluable information offers a complete energy-saving approach essential for both the chemical and mechanical engineering curricula, as well as for practicing engineers.

Advances in Energy System Optimization

Advances in Energy System Optimization PDF

Author: Valentin Bertsch

Publisher: Springer

Published: 2017-03-16

Total Pages: 245

ISBN-13: 3319517953

DOWNLOAD EBOOK →

The papers presented in this volume address diverse challenges in energy systems, ranging from operational to investment planning problems, from market economics to technical and environmental considerations, from distribution grids to transmission grids and from theoretical considerations to data provision concerns and applied case studies. The International Symposium on Energy System Optimization (ISESO) was held on November 9th and 10th 2015 at the Heidelberg Institute for Theoretical Studies (HITS) and was organized by HITS, Heidelberg University and Karlsruhe Institute of Technology.

Robust Optimization in Electric Energy Systems

Robust Optimization in Electric Energy Systems PDF

Author: Xu Andy Sun

Publisher: Springer Nature

Published: 2021-11-08

Total Pages: 337

ISBN-13: 3030851281

DOWNLOAD EBOOK →

This book covers robust optimization theory and applications in the electricity sector. The advantage of robust optimization with respect to other methodologies for decision making under uncertainty are first discussed. Then, the robust optimization theory is covered in a friendly and tutorial manner. Finally, a number of insightful short- and long-term applications pertaining to the electricity sector are considered. Specifically, the book includes: robust set characterization, robust optimization, adaptive robust optimization, hybrid robust-stochastic optimization, applications to short- and medium-term operations problems in the electricity sector, and applications to long-term investment problems in the electricity sector. Each chapter contains end-of-chapter problems, making it suitable for use as a text. The purpose of the book is to provide a self-contained overview of robust optimization techniques for decision making under uncertainty in the electricity sector. The targeted audience includes industrial and power engineering students and practitioners in energy fields. The young field of robust optimization is reaching maturity in many respects. It is also useful for practitioners, as it provides a number of electricity industry applications described up to working algorithms (in JuliaOpt).

Optimization in Renewable Energy Systems

Optimization in Renewable Energy Systems PDF

Author: Ozan Erdinc

Publisher: Butterworth-Heinemann

Published: 2017-02-25

Total Pages: 326

ISBN-13: 0081012098

DOWNLOAD EBOOK →

Optimization in Renewable Energy Systems: Recent Perspectives covers all major areas where optimization techniques have been applied to reduce uncertainty or improve results in renewable energy systems (RES). Production of power with RES is highly variable and unpredictable, leading to the need for optimization-based planning and operation in order to maximize economies while sustaining performance. This self-contained book begins with an introduction to optimization, then covers a wide range of applications in both large and small scale operations, including optimum operation of electric power systems with large penetration of RES, power forecasting, transmission system planning, and DG sizing and siting for distribution and end-user premises. This book is an excellent choice for energy engineers, researchers, system operators, system regulators, and graduate students. Provides chapters written by experts in the field Goes beyond forecasting to apply optimization techniques to a wide variety of renewable energy system issues, from large scale to relatively small scale systems Provides accompanying computer code for related chapters

Design and Performance Optimization of Renewable Energy Systems

Design and Performance Optimization of Renewable Energy Systems PDF

Author: Mamdouh Assad

Publisher: Academic Press

Published: 2021-01-12

Total Pages: 319

ISBN-13: 0128232323

DOWNLOAD EBOOK →

Design and Performance Optimization of Renewable Energy Systems provides an integrated discussion of issues relating to renewable energy performance design and optimization using advanced thermodynamic analysis with modern methods to configure major renewable energy plant configurations (solar, geothermal, wind, hydro, PV). Vectors of performance enhancement reviewed include thermodynamics, heat transfer, exergoeconomics and neural network techniques. Source technologies studied range across geothermal power plants, hydroelectric power, solar power towers, linear concentrating PV, parabolic trough solar collectors, grid-tied hybrid solar PV/Fuel cell for freshwater production, and wind energy systems. Finally, nanofluids in renewable energy systems are reviewed and discussed from the heat transfer enhancement perspective. Reviews the fundamentals of thermodynamics and heat transfer concepts to help engineers overcome design challenges for performance maximization Explores advanced design and operating principles for solar, geothermal and wind energy systems with diagrams and examples Combines detailed mathematical modeling with relevant computational analyses, focusing on novel techniques such as artificial neural network analyses Demonstrates how to maximize overall system performance by achieving synergies in equipment and component efficiency

Renewable Energy Systems

Renewable Energy Systems PDF

Author: Ahmad Taher Azar

Publisher: Academic Press

Published: 2021-09-09

Total Pages: 734

ISBN-13: 0128203986

DOWNLOAD EBOOK →

Renewable Energy Systems: Modelling, Optimization and Control aims to cross-pollinate recent advances in the study of renewable energy control systems by bringing together diverse scientific breakthroughs on the modeling, control and optimization of renewable energy systems by leading researchers. The book brings together the most comprehensive collection of modeling, control theorems and optimization techniques to help solve many scientific issues for researchers in renewable energy and control engineering. Many multidisciplinary applications are discussed, including new fundamentals, modeling, analysis, design, realization and experimental results. The book also covers new circuits and systems to help researchers solve many nonlinear problems. This book fills the gaps between different interdisciplinary applications, ranging from mathematical concepts, modeling, and analysis, up to the realization and experimental work. Covers modeling, control theorems and optimization techniques which will solve many scientific issues for researchers in renewable energy Discusses many multidisciplinary applications with new fundamentals, modeling, analysis, design, realization and experimental results Includes new circuits and systems, helping researchers solve many nonlinear problems

Modeling, Assessment, and Optimization of Energy Systems

Modeling, Assessment, and Optimization of Energy Systems PDF

Author: Hoseyn Sayyaadi

Publisher: Academic Press

Published: 2020-09-19

Total Pages: 558

ISBN-13: 0128166576

DOWNLOAD EBOOK →

Modelling, Assessment, and Optimization of Energy Systems provides comprehensive methodologies for the thermal modelling of energy systems based on thermodynamic, exergoeconomic and exergoenviromental approaches. It provides advanced analytical approaches, assessment criteria and the methodologies to obtain analytical expressions from the experimental data. The concept of single-objective and multi-objective optimization with application to energy systems is provided, along with decision-making tools for multi-objective problems, multi-criteria problems, for simplifying the optimization of large energy systems, and for exergoeconomic improvement integrated with a simulator EIS method. This book provides a comprehensive methodology for modeling, assessment, improvement of any energy system with guidance, and practical examples that provide detailed insights for energy engineering, mechanical engineering, chemical engineering and researchers in the field of analysis and optimization of energy systems. Offers comprehensive analytical tools for the modeling and simulation of energy systems with applications for decision-making tools Provides methodologies to obtain analytical models of energy systems for experimental data Covers decision-making tools in multi-objective problems

Optimization in the Energy Industry

Optimization in the Energy Industry PDF

Author: Josef Kallrath

Publisher: Springer Science & Business Media

Published: 2008-12-25

Total Pages: 537

ISBN-13: 3540889655

DOWNLOAD EBOOK →

This book offers a broad, in-depth overview that reflects the requirements, possibilities and limits of mathematical optimization and, especially, stochastic optimization in the energy industry.

Thermodynamic Optimization of Complex Energy Systems

Thermodynamic Optimization of Complex Energy Systems PDF

Author: Adrian Bejan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 472

ISBN-13: 9401146853

DOWNLOAD EBOOK →

A comprehensive assessment of the methodologies of thermodynamic optimization, exergy analysis and thermoeconomics, and their application to the design of efficient and environmentally sound energy systems. The chapters are organized in a sequence that begins with pure thermodynamics and progresses towards the blending of thermodynamics with other disciplines, such as heat transfer and cost accounting. Three methods of analysis stand out: entropy generation minimization, exergy (or availability) analysis, and thermoeconomics. The book reviews current directions in a field that is both extremely important and intellectually alive. Additionally, new directions for research on thermodynamics and optimization are revealed.