Optimal Estimation in Approximation Theory

Optimal Estimation in Approximation Theory PDF

Author: Charles Michelli

Publisher: Springer Science & Business Media

Published: 2013-11-22

Total Pages: 302

ISBN-13: 1468423886

DOWNLOAD EBOOK →

The papers in this volume were presented at an International Symposium on Optimal Estimation in Approximation Theory which was held in Freudenstadt, Federal Republic of Germany, September 27-29, 1976. The symposium was sponsored by the IBM World Trade Europe/Middle East/Africa Corporation, Paris, and IBM Germany. On behalf of all the participants we wish to express our appreciation to the spon sors for their generous support. In the past few years the quantification of the notion of com plexity for various important computational procedures (e. g. multi plication of numbers or matrices) has been widely studied. Some such concepts are necessary ingredients in the quest for optimal, or nearly optimal, algorithms. The purpose of this symposium was to present recent results of similar character in the field or ap proximation theory, as well as to describe the algorithms currently being used in important areas of application of approximation theory such as: crystallography, data transmission systems, cartography, reconstruction from x-rays, planning of radiation treatment, optical perception, analysis of decay processes and inertial navigation system control. It was the hope of the organizers that this con frontation of theory and practice would be of benefit to both groups. Whatever success th•~ symposium had is due, in no small part, to the generous and wise scientific counsel of Professor Helmut Werner, to whom the organizers are most grateful. Dr. T. J. Rivlin Dr. P. Schweitzer IBM T. J. Watson Research Center IBM Germany Scientific and Education Programs Yorktown Heights, N. Y.

Applied Optimal Estimation

Applied Optimal Estimation PDF

Author: The Analytic Sciences Corporation

Publisher: MIT Press

Published: 1974-05-15

Total Pages: 388

ISBN-13: 9780262570480

DOWNLOAD EBOOK →

This is the first book on the optimal estimation that places its major emphasis on practical applications, treating the subject more from an engineering than a mathematical orientation. Even so, theoretical and mathematical concepts are introduced and developed sufficiently to make the book a self-contained source of instruction for readers without prior knowledge of the basic principles of the field. The work is the product of the technical staff of The Analytic Sciences Corporation (TASC), an organization whose success has resulted largely from its applications of optimal estimation techniques to a wide variety of real situations involving large-scale systems. Arthur Gelb writes in the Foreword that "It is our intent throughout to provide a simple and interesting picture of the central issues underlying modern estimation theory and practice. Heuristic, rather than theoretically elegant, arguments are used extensively, with emphasis on physical insights and key questions of practical importance." Numerous illustrative examples, many based on actual applications, have been interspersed throughout the text to lead the student to a concrete understanding of the theoretical material. The inclusion of problems with "built-in" answers at the end of each of the nine chapters further enhances the self-study potential of the text. After a brief historical prelude, the book introduces the mathematics underlying random process theory and state-space characterization of linear dynamic systems. The theory and practice of optimal estimation is them presented, including filtering, smoothing, and prediction. Both linear and non-linear systems, and continuous- and discrete-time cases, are covered in considerable detail. New results are described concerning the application of covariance analysis to non-linear systems and the connection between observers and optimal estimators. The final chapters treat such practical and often pivotal issues as suboptimal structure, and computer loading considerations. This book is an outgrowth of a course given by TASC at a number of US Government facilities. Virtually all of the members of the TASC technical staff have, at one time and in one way or another, contributed to the material contained in the work.

Optimal and Robust Estimation

Optimal and Robust Estimation PDF

Author: Frank L. Lewis

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 395

ISBN-13: 1351837540

DOWNLOAD EBOOK →

More than a decade ago, world-renowned control systems authority Frank L. Lewis introduced what would become a standard textbook on estimation, under the title Optimal Estimation, used in top universities throughout the world. The time has come for a new edition of this classic text, and Lewis enlisted the aid of two accomplished experts to bring the book completely up to date with the estimation methods driving today's high-performance systems. A Classic Revisited Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory, Second Edition reflects new developments in estimation theory and design techniques. As the title suggests, the major feature of this edition is the inclusion of robust methods. Three new chapters cover the robust Kalman filter, H-infinity filtering, and H-infinity filtering of discrete-time systems. Modern Tools for Tomorrow's Engineers This text overflows with examples that highlight practical applications of the theory and concepts. Design algorithms appear conveniently in tables, allowing students quick reference, easy implementation into software, and intuitive comparisons for selecting the best algorithm for a given application. In addition, downloadable MATLAB® code allows students to gain hands-on experience with industry-standard software tools for a wide variety of applications. This cutting-edge and highly interactive text makes teaching, and learning, estimation methods easier and more modern than ever.

Introduction to Optimal Estimation

Introduction to Optimal Estimation PDF

Author: Edward W. Kamen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 384

ISBN-13: 144710417X

DOWNLOAD EBOOK →

A handy technical introduction to the latest theories and techniques of optimal estimation. It provides readers with extensive coverage of Wiener and Kalman filtering along with a development of least squares estimation, maximum likelihood and maximum a posteriori estimation based on discrete-time measurements. Much emphasis is placed on how they interrelate and fit together to form a systematic development of optimal estimation. Examples and exercises refer to MATLAB software.

An Introduction to Optimal Estimation of Dynamical Systems

An Introduction to Optimal Estimation of Dynamical Systems PDF

Author: J.L. Junkins

Publisher: Springer

Published: 1978-07-31

Total Pages: 498

ISBN-13:

DOWNLOAD EBOOK →

This text 1s designed to introduce the fundamentals of esti mation to engineers, scientists, and applied mathematicians. The level of the presentation should be accessible to senior under graduates and should prove especially well-suited as a self study guide for practicing professionals. My primary motivation for writing this book 1s to make a significant contribution toward minimizing the painful process most newcomers must go through in digesting and applying the theory. Thus the treatment 1s intro ductory and essence-oriented rather than comprehensive. While some original material 1s included, the justification for this text lies not in the contribution of dramatic new theoretical re sults, but rather in the degree of success I believe that I have achieved in providing a source from which this material may be learned more efficiently than through study of an existing text or the rather diffuse literature. This work is the outgrowth of the author's mid-1960's en counter with the subject while motivated by practical problems aSSociated with space vehicle orbit determination and estimation of powered rocket trajectories. The text has evolved as lecture notes for short courses and seminars given to professionals at Pr>efaae various private laboratories and government agencies, and during the past six years, in conjunction with engineering courses taught at the University of Virginia. To motivate the reader's thinking, the structure of a typical estimation problem often assumes the following form: • Given a dynamical system, a mathematical model is hypothesized based upon the experience of the investigator.

Approximation Theory and Optimization

Approximation Theory and Optimization PDF

Author: M. D. Buhmann

Publisher: Cambridge University Press

Published: 1997-11-13

Total Pages: 238

ISBN-13: 9780521581905

DOWNLOAD EBOOK →

Michael Powell is one of the world's foremost figures in numerical analysis. This volume, first published in 1997, is derived from invited talks given at a meeting celebrating his 60th birthday and, reflecting Powell's own achievements, focuses on innovative work in optimisation and in approximation theory. The individual papers have been written by leading authorities in their subjects and are a mix of expository articles and surveys. They have all been reviewed and edited to form a coherent volume for this important discipline within mathematics, with highly relevant applications throughout science and engineering.

Approximation Theory

Approximation Theory PDF

Author: Carl De Boor

Publisher: American Mathematical Soc.

Published: 1986-12-31

Total Pages: 152

ISBN-13: 9780821867433

DOWNLOAD EBOOK →

The papers in this book, first presented at a 1986 AMS Short Course, give a brief introduction to approximation theory and some of its current areas of active research, both theoretical and applied. The first lecture describes and illustrates the basic concerns of the field. Topics highlighted in the other lectures include the following: approximation in the complex domain, $N$-width, optimal recovery, interpolation, algorithms for approximation, and splines, with a strong emphasis on a multivariate setting for the last three topics. The book is aimed at mathematicians interested in an introduction to areas of current research and to engineers and scientists interested in exploring the field for possible applications to their own fields. The book is best understood by those with a standard first graduate course in real and complex analysis, but some of the presentations are accessible with the minimal requirements of advanced calculus and linear algebra.