Optimal Auxiliary Functions Method for Nonlinear Dynamical Systems

Optimal Auxiliary Functions Method for Nonlinear Dynamical Systems PDF

Author: Vasile Marinca

Publisher: Springer Nature

Published: 2021-07-14

Total Pages: 479

ISBN-13: 303075653X

DOWNLOAD EBOOK →

This book presents the optimal auxiliary functions method and applies it to various engineering problems and in particular in boundary layer problems. The cornerstone of the presented procedure is the concept of “optimal auxiliary functions” which are needed to obtain accurate results in an efficient way. Unlike other known analytic approaches, this procedure provides us with a simple but rigorous way to control and adjust the convergence of the solutions of nonlinear dynamical systems. The optimal auxiliary functions are depending on some convergence-control parameters whose optimal values are rigorously determined from mathematical point of view. The capital strength of our procedure is its fast convergence, since after only one iteration, we obtain very accurate analytical solutions which are very easy to be verified. Moreover, no simplifying hypothesis or assumptions are made. The book contains a large amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines, and many more. The book is a continuation of our previous books “Nonlinear Dynamical Systems in Engineering. Some Approximate Approaches”, Springer-2011 and “The Optimal Homotopy Asymptotic Method. Engineering Applications”, Springer-2015.

Nonlinear Dynamical Systems in Engineering

Nonlinear Dynamical Systems in Engineering PDF

Author: Vasile Marinca

Publisher: Springer Science & Business Media

Published: 2012-01-05

Total Pages: 403

ISBN-13: 3642227341

DOWNLOAD EBOOK →

This book presents and extend different known methods to solve different types of strong nonlinearities encountered by engineering systems. A better knowledge of the classical methods presented in the first part lead to a better choice of the so-called “base functions”. These are absolutely necessary to obtain the auxiliary functions involved in the optimal approaches which are presented in the second part. Every chapter introduces a distinct approximate method applicable to nonlinear dynamical systems. Each approximate analytical approach is accompanied by representative examples related to nonlinear dynamical systems from to various fields of engineering.

Acoustics and Vibration of Mechanical Structures – AVMS-2021

Acoustics and Vibration of Mechanical Structures – AVMS-2021 PDF

Author: Nicolae Herisanu

Publisher: Springer Nature

Published: 2022-08-10

Total Pages: 381

ISBN-13: 3030967875

DOWNLOAD EBOOK →

This book is a collection of contributions presented at the 16th Conference on Acoustic and Vibration of Mechanical Structure held in Timişoara, Romania, May 28, 2021. The conference focused on a broad range of topics related to acoustics and vibration, such as noise and vibration control, noise and vibration generation and propagation, effects of noise and vibration, condition monitoring and vibration testing, modelling, prediction and simulation of noise and vibration, environmental and occupational noise and vibration, noise and vibration attenuators, biomechanics and bioacoustics. The book also discusses analytical, numerical and experimental techniques applicable to analyze linear and non-linear noise and vibration problems (including strong nonlinearity) and it is primarily intended to emphasize the actual trends and state-of-the-art developments in the above mentioned topics. The primary audience of this book consist of academics, researchers and professionals, as well as PhD students concerned with various fields of acoustics and vibration of mechanical structures.

Dynamical Systems in Applications

Dynamical Systems in Applications PDF

Author: Jan Awrejcewicz

Publisher: Springer

Published: 2018-09-01

Total Pages: 506

ISBN-13: 3319966014

DOWNLOAD EBOOK →

The book is intended for all those who are interested in application problems related to dynamical systems. It provides an overview of recent findings on dynamical systems in the broadest sense. Divided into 46 contributed chapters, it addresses a diverse range of problems. The issues discussed include: Finite Element Analysis of optomechatronic choppers with rotational shafts; computational based constrained dynamics generation for a model of a crane with compliant support; model of a kinetic energy recuperation system for city buses; energy accumulation in mechanical resonance; hysteretic properties of shell dampers; modeling a water hammer with quasi-steady and unsteady friction in viscoelastic conduits; application of time-frequency methods for the assessment of gas metal arc welding conditions; non-linear modeling of the human body’s dynamic load; experimental evaluation of mathematical and artificial neural network modeling for energy storage systems; interaction of bridge cables and wake in vortex-induced vibrations; and the Sommerfeld effect in a single DOF spring-mass-damper system with non-ideal excitation.

Nonlinear Dynamical Systems in Engineering

Nonlinear Dynamical Systems in Engineering PDF

Author: Vasile Marinca

Publisher: Springer Science & Business Media

Published: 2012-01-05

Total Pages: 403

ISBN-13: 364222735X

DOWNLOAD EBOOK →

This book presents and extend different known methods to solve different types of strong nonlinearities encountered by engineering systems. A better knowledge of the classical methods presented in the first part lead to a better choice of the so-called “base functions”. These are absolutely necessary to obtain the auxiliary functions involved in the optimal approaches which are presented in the second part. Every chapter introduces a distinct approximate method applicable to nonlinear dynamical systems. Each approximate analytical approach is accompanied by representative examples related to nonlinear dynamical systems from to various fields of engineering.

The Optimal Homotopy Asymptotic Method

The Optimal Homotopy Asymptotic Method PDF

Author: Vasile Marinca

Publisher: Springer

Published: 2015-04-02

Total Pages: 476

ISBN-13: 3319153749

DOWNLOAD EBOOK →

This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches”, published at Springer in 2011 and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five applications are presented from fluid mechanics and nonlinear oscillations. The Chapter 4 presents the Optimal Homotopy Asymptotic Method with a single iteration and solving the linear equation on the first approximation. Here are treated 32 models from different fields of engineering such as fluid mechanics, thermodynamics, nonlinear damped and undamped oscillations, electrical machines and even from physics and biology. The last chapter is devoted to the Optimal Homotopy Asymptotic Method with a single iteration but without solving the equation in the first approximation.

Dynamical Systems: Theoretical and Experimental Analysis

Dynamical Systems: Theoretical and Experimental Analysis PDF

Author: Jan Awrejcewicz

Publisher: Springer

Published: 2016-09-17

Total Pages: 424

ISBN-13: 3319424084

DOWNLOAD EBOOK →

The book is the second volume of a collection of contributions devoted to analytical, numerical and experimental techniques of dynamical systems, presented at the international conference "Dynamical Systems: Theory and Applications," held in Łódź, Poland on December 7-10, 2015. The studies give deep insight into new perspectives in analysis, simulation, and optimization of dynamical systems, emphasizing directions for future research. Broadly outlined topics covered include: bifurcation and chaos in dynamical systems, asymptotic methods in nonlinear dynamics, dynamics in life sciences and bioengineering, original numerical methods of vibration analysis, control in dynamical systems, stability of dynamical systems, vibrations of lumped and continuous sytems, non-smooth systems, engineering systems and differential equations, mathematical approaches to dynamical systems, and mechatronics.

Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems

Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems PDF

Author: Andrei N. Leznov

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 308

ISBN-13: 3034886381

DOWNLOAD EBOOK →

The book reviews a large number of 1- and 2-dimensional equations that describe nonlinear phenomena in various areas of modern theoretical and mathematical physics. It is meant, above all, for physicists who specialize in the field theory and physics of elementary particles and plasma, for mathe maticians dealing with nonlinear differential equations, differential geometry, and algebra, and the theory of Lie algebras and groups and their representa tions, and for students and post-graduates in these fields. We hope that the book will be useful also for experts in hydrodynamics, solid-state physics, nonlinear optics electrophysics, biophysics and physics of the Earth. The first two chapters of the book present some results from the repre sentation theory of Lie groups and Lie algebras and their counterpart on supermanifolds in a form convenient in what follows. They are addressed to those who are interested in integrable systems but have a scanty vocabulary in the language of representation theory. The experts may refer to the first two chapters only occasionally. As we wanted to give the reader an opportunity not only to come to grips with the problem on the ideological level but also to integrate her or his own concrete nonlinear equations without reference to the literature, we had to expose in a self-contained way the appropriate parts of the representation theory from a particular point of view.

Acoustics and Vibration of Mechanical Structures—AVMS-2017

Acoustics and Vibration of Mechanical Structures—AVMS-2017 PDF

Author: Nicolae Herisanu

Publisher: Springer

Published: 2017-12-21

Total Pages: 420

ISBN-13: 3319698230

DOWNLOAD EBOOK →

This book is a collection of papers presented at Acoustics and Vibration of Mechanical Structures 2017 – AVMS 2017 – highlighting the current trends and state-of-the-art developments in the field. It covers a broad range of topics, such as noise and vibration control, noise and vibration generation and propagation, the effects of noise and vibration, condition monitoring and vibration testing, modeling, prediction and simulation of noise and vibration, environmental and occupational noise and vibration, noise and vibration attenuators, as well as biomechanics and bioacoustics. The book also presents analytical, numerical and experimental techniques for evaluating linear and non-linear noise and vibration problems (including strong nonlinearity). It is primarily intended for academics, researchers and professionals, as well as PhD students in various fields of the acoustics and vibration of mechanical structures.

Beyond Perturbation

Beyond Perturbation PDF

Author: Shijun Liao

Publisher: CRC Press

Published: 2003-10-27

Total Pages: 335

ISBN-13: 1135438293

DOWNLOAD EBOOK →

Solving nonlinear problems is inherently difficult, and the stronger the nonlinearity, the more intractable solutions become. Analytic approximations often break down as nonlinearity becomes strong, and even perturbation approximations are valid only for problems with weak nonlinearity. This book introduces a powerful new analytic method for nonlinear problems-homotopy analysis-that remains valid even with strong nonlinearity. In Part I, the author starts with a very simple example, then presents the basic ideas, detailed procedures, and the advantages (and limitations) of homotopy analysis. Part II illustrates the application of homotopy analysis to many interesting nonlinear problems. These range from simple bifurcations of a nonlinear boundary-value problem to the Thomas-Fermi atom model, Volterra's population model, Von Karman swirling viscous flow, and nonlinear progressive waves in deep water. Although the homotopy analysis method has been verified in a number of prestigious journals, it has yet to be fully detailed in book form. Written by a pioneer in its development, Beyond Pertubation: Introduction to the Homotopy Analysis Method is your first opportunity to explore the details of this valuable new approach, add it to your analytic toolbox, and perhaps make contributions to some of the questions that remain open.