Optical Spectroscopy

Optical Spectroscopy PDF

Author: Nikolai V. Tkachenko

Publisher: Elsevier

Published: 2006-06-06

Total Pages: 323

ISBN-13: 0080461727

DOWNLOAD EBOOK →

Optical Spectroscopy bridges a gap by providing a background on optics while focusing on spectroscopic methodologies, tools and instrumentations. The book introduces the most widely used steady-state and time-resolved spectroscopic techniques, makes comparisions between them, and provides the methodology for estimating the most important characteristics of the techniques such as sensitivity and time resolution. Recent developments in lasers, optics and electronics has had a significant impact on modern optical spectroscopic methods and instrumentations. Combining the newest lasers, advanced detectors and other high technology components researchers are able to assemble a spectroscopic instrument with characteristics that were hardly achievable a decade ago. This book will help readers to sourse spectroscopy tools to solve their problems by providing information on the most widely used methods while introducing readers to the principles of quantitative analysis of the application range for each methodology. In addition, background information is provided on optics, optical measurements and laser physics, which is of crucial importance for spectroscopic applications. * provides an overview of the most popular absorption/emission spectroscopy techniques* discusses application range, advantages and disadvantages are compared for different spectroscopy methods* provides introductions to the relevant topics such as optics and laser physics

An Introduction to the Optical Spectroscopy of Inorganic Solids

An Introduction to the Optical Spectroscopy of Inorganic Solids PDF

Author: Jose Solé

Publisher: John Wiley & Sons

Published: 2005-06-10

Total Pages: 304

ISBN-13: 0470868872

DOWNLOAD EBOOK →

This practical guide to spectroscopy and inorganic materials meets the demand from academia and the science community for an introductory text that introduces the different optical spectroscopic techniques, used in many laboratories, for material characterisation. Treats the most basic aspects to be introduced into the field of optical spectroscopy of inorganic materials, enabling a student to interpret simple optical (absorption, reflectivity, emission and scattering) spectra Contains simple, illustrative examples and solved exercises Covers the theory, instrumentation and applications of spectroscopy for the characterisation of inorganic materials, including lasers, phosphors and optical materials such as photonics This is an ideal beginner’s guide for students with some previous knowledge in quantum mechanics and optics, as well as a reference source for professionals or researchers in materials science, especially the growing field of optical materials.

Optical Imaging and Spectroscopy

Optical Imaging and Spectroscopy PDF

Author: David J. Brady

Publisher: John Wiley & Sons

Published: 2009-04-27

Total Pages: 530

ISBN-13: 0470443723

DOWNLOAD EBOOK →

An essential reference for optical sensor system design This is the first text to present an integrated view of the optical and mathematical analysis tools necessary to understand computational optical system design. It presents the foundations of computational optical sensor design with a focus entirely on digital imaging and spectroscopy. It systematically covers: Coded aperture and tomographic imaging Sampling and transformations in optical systems, including wavelets and generalized sampling techniques essential to digital system analysis Geometric, wave, and statistical models of optical fields The basic function of modern optical detectors and focal plane arrays Practical strategies for coherence measurement in imaging system design The sampling theory of digital imaging and spectroscopy for both conventional and emerging compressive and generalized measurement strategies Measurement code design Linear and nonlinear signal estimation The book concludes with a review of numerous design strategies in spectroscopy and imaging and clearly outlines the benefits and limits of each approach, including coded aperture and imaging spectroscopy, resonant and filter-based systems, and integrated design strategies to improve image resolution, depth of field, and field of view. Optical Imaging and Spectroscopy is an indispensable textbook for advanced undergraduate and graduate courses in optical sensor design. In addition to its direct applicability to optical system design, unique perspectives on computational sensor design presented in the text will be of interest for sensor designers in radio and millimeter wave, X-ray, and acoustic systems.

Spectroscopy and Optical Diagnostics for Gases

Spectroscopy and Optical Diagnostics for Gases PDF

Author: Ronald K. Hanson

Publisher: Springer

Published: 2015-10-26

Total Pages: 290

ISBN-13: 3319232525

DOWNLOAD EBOOK →

This text provides an introduction to the science that governs the interaction of light and matter (in the gas phase). It provides readers with the basic knowledge to exploit the light-matter interaction to develop quantitative tools for gas analysis (i.e. optical diagnostics) and understand and interpret the results of spectroscopic measurements. The authors pair the basics of gas‐phase spectroscopy with coverage of key optical diagnostic techniques utilized by practicing engineers and scientists to measure fundamental flow‐field properties. The text is organized to cover three sub‐topics of gas‐phase spectroscopy: (1) spectral line positions, (2) spectral line strengths, and (3) spectral lineshapes by way of absorption, emission, and scattering interactions. The latter part of the book describes optical measurement techniques and equipment. Key subspecialties include laser induced fluorescence, tunable laser absorption spectroscopy, and wavelength modulation spectroscopy. It is ideal for students and practitioners across a range of applied sciences including mechanical, aerospace, chemical, and materials engineering.

Optical Spectroscopy: Fundamentals And Advanced Applications

Optical Spectroscopy: Fundamentals And Advanced Applications PDF

Author: Roduner Emil

Publisher: World Scientific

Published: 2018-12-27

Total Pages: 268

ISBN-13: 1786346125

DOWNLOAD EBOOK →

Developments in optical spectroscopy have taken new directions in recent decades, with the focus shifting from understanding small gas phase molecules towards applications in materials and biological systems. This is due to significant interest in these topics, which has been facilitated by significant technological developments.Absorption, luminescence and excited state energy transfer properties have become of crucial importance on a large scale in materials related to light-harvesting in organic and inorganic third generation solar cells, for solar water splitting, and in light emitting diodes, TV screens and many other applications. In addition, Förster resonance energy transfer can be used as a ruler for the characterisation of the structure and dynamics of DNA, proteins and other biomolecules via labelling with fluorescing markers.This advanced textbook covers a range of these applications as well as the basics of absorption, emission and energy transfer of molecular systems in the condensed phase, in addition to the corresponding behaviour of metal nanoparticles and semiconductor quantum dots. Technical experimental requirements, aspects to avoid interfering perturbations and methods of quantitative data analysis make this book accessible and ideal for students and researchers in physical chemistry, biophysics and nanomaterials.

Two-dimensional Optical Spectroscopy

Two-dimensional Optical Spectroscopy PDF

Author: Minhaeng Cho

Publisher:

Published: 2020-06-30

Total Pages: 385

ISBN-13: 9780367577322

DOWNLOAD EBOOK →

Effectively introducing a newly developed research field, this book provides a detailed account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy. It also bridges the gap between the formal development of nonlinear optical spectroscopy and the application of the theory to explain experimenta

Optical Astronomical Spectroscopy

Optical Astronomical Spectroscopy PDF

Author: C.R. Kitchin

Publisher: CRC Press

Published: 1995-01-01

Total Pages: 292

ISBN-13: 9781420050691

DOWNLOAD EBOOK →

A concise introduction, Optical Astronomical Spectroscopy appeals to the newcomer of astronomical spectroscopy and assumes no previous specialist knowledge. Beginning from the physical background of spectroscopy with a clear explanation of energy levels and spectroscopic notation, the book proceeds to introduce the main techniques of optical spectroscopy and the range of instrumentation that is available. With clarity and directness, it then describes the applications of spectroscopy in modern astronomy, such as the solar system, stars, nebulae, the interstellar medium, and galaxies, giving an immediate appeal to beginners.

Principles of Nonlinear Optical Spectroscopy

Principles of Nonlinear Optical Spectroscopy PDF

Author: Shaul Mukamel

Publisher: Oxford University Press on Demand

Published: 1999

Total Pages: 543

ISBN-13: 9780195132915

DOWNLOAD EBOOK →

This textbook presents a systematic and unifying viewpoint for a wide class of nonlinear spectroscopic techniques in time domain and frequency domain. It is directed towards active researchers in physics, optics, chemistry, and materials science, as well as graduate students who enter this complex and rapidly developing field. Nonlinear optical interactions of laser fields with matter provide powerful spectroscopic tools for the understanding of microscopic interactions and dynamic processes. One of the major obstacles facing researchers in this field, however, is the flood of experimental techniques and terminologies, which create a serious language barrier. The general microscopic correlation function approach to the nonlinear optical response developed in this book is essential for understanding the relationships among different techniques and a comparison of their information content, the design of new measurements, and for a systematic comparison of the optical response of different systems such as dyes in solutions, atoms and molecules in the gas phase, liquids, molecular aggregates and superlatives, and semiconductor nanostructures. The approach is based on formulating the nonlinear response by representing the state of matter by the density matrix and following its evolution on Liouville space. Current active research areas such as femtosecond time-domain techniques, semi-classical and wave-packet dynamics, pulse shaping, pulse locking, exciton confinement, and the interplay of electronic, nuclear and field coherence are emphasized. The material has been developed from the author's highly successful interdisciplinary course at the University of Rochester attended by science and engineering graduate students.

Optical Spectroscopy of Inorganic Solids

Optical Spectroscopy of Inorganic Solids PDF

Author: B. Henderson

Publisher: Oxford University Press

Published: 2006

Total Pages: 678

ISBN-13: 9780199298624

DOWNLOAD EBOOK →

This text describes the technique of optical spectroscopy applied to problems in condensed matter physics. It relates theoretical understanding to experimental measurement, including discussion of the optical spectroscopy of inorganic insulators, with many illustrative examples. Symmetry arguments are developed from a formal group theoretical basis and are frequently used, and a special effort is made to treat the subject of lattice vibrations and to show how these can affect the spectroscopic properties of solids. The elements of laser theory are developed, and the authors also explore the use of optically detected magnetic resonance techniques for the investigation of semiconducting materials.

Spectroscopic Properties of Rare Earths in Optical Materials

Spectroscopic Properties of Rare Earths in Optical Materials PDF

Author: Guokui Liu

Publisher: Springer Science & Business Media

Published: 2006-01-29

Total Pages: 567

ISBN-13: 3540282092

DOWNLOAD EBOOK →

Aimed at researchers and graduate students, this book provides up-to-date information about the electronic interactions that impact the optical properties of rare earth ions in solids. Its goal is to establish a connection between fundamental principles and the materials properties of rare-earth activated luminescent and laser optical materials. The theoretical survey and introduction to spectroscopic properties covers electronic energy level structure, intensities of optical transitions, ion-phonon interactions, line broadening, and energy transfer and up-conversion. An important aspect of the book lies in its deep and detailed discussions of materials properties and the potential of new applications such as optical storage, information processing, nanophotonics, and molecular probes that have been identified in recent experimental studies. This volume will be a valuable reference book on advanced topics of rare earth spectroscopy and materials science.