Odyssey of Light in Nonlinear Optical Fibers

Odyssey of Light in Nonlinear Optical Fibers PDF

Author: Kuppuswamy Porsezian

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 568

ISBN-13: 1482236141

DOWNLOAD EBOOK →

Odyssey of Light in Nonlinear Optical Fibers: Theory and Applications presents a collection of breakthrough research portraying the odyssey of light from optical solitons to optical rogue waves in nonlinear optical fibers. The book provides a simple yet holistic view on the theoretical and application-oriented aspects of light, with a special focus on the underlying nonlinear phenomena. Exploring the very frontiers of light-wave technology, the text covers the basics of nonlinear fiberoptics and the dynamics of electromagnetic pulse propagation in nonlinear waveguides. It also highlights some of the latest advances in nonlinear optical fiber technology, discussing hidden symmetry reductions and Ablowitz–Kaup–Newell–Segur (AKNS) hierarchies for nonautonomous solitons, state-of-the-art Brillouin scattering applications, backpropagation, and the concept of eigenvalue communication—a powerful nonlinear digital signal processing technique that paves the way to overcome the current limitations of traditional communications methods in nonlinear fiber channels. Key chapters study the feasibility of the eigenvalue demodulation scheme based on digital coherent technology by throwing light on the experimental study of the noise tolerance of the demodulated eigenvalues, investigate matter wave solitons and other localized excitations pertaining to Bose–Einstein condensates in atom optics, and examine quantum field theory analogue effects occurring in binary waveguide arrays, plasmonic arrays, etc., as well as their ensuing nonlinear wave propagation. Featuring a foreword by Dr. Akira Hasegawa, the father of soliton communication systems, Odyssey of Light in Nonlinear Optical Fibers: Theory and Applications serves as a curtain raiser to usher in the photonics era. The technological innovations at the core of the book form the basis for the next generation of ultra-high speed computers and telecommunication devices.

Shaping Light in Nonlinear Optical Fibers

Shaping Light in Nonlinear Optical Fibers PDF

Author: Sonia Boscolo

Publisher: John Wiley & Sons

Published: 2017-05-30

Total Pages: 486

ISBN-13: 1119088127

DOWNLOAD EBOOK →

This book is a contemporary overview of selected topics in fiber optics. It focuses on the latest research results on light wave manipulation using nonlinear optical fibers, with the aim of capturing some of the most innovative developments on this topic. The book’s scope covers both fundamentals and applications from both theoretical and experimental perspectives, with topics including linear and nonlinear effects, pulse propagation phenomena and pulse shaping, solitons and rogue waves, novel optical fibers, supercontinuum generation, polarization management, optical signal processing, fiber lasers, optical wave turbulence, light propagation in disordered fiber media, and slow and fast light. With contributions from leading-edge scientists in the field of nonlinear photonics and fiber optics, they offer an overview of the latest advances in their own research area. The listing of recent research papers at the end of each chapter is useful for researchers using the book as a reference. As the book addresses fundamental and practical photonics problems, it will also be of interest to, and benefit, broader academic communities, including areas such as nonlinear science, applied mathematics and physics, and optical engineering. It offers the reader a wide and critical overview of the state-of-the-art within this practical – as well as fundamentally important and interesting – area of modern science, providing a useful reference which will encourage further research and advances in the field.

Waveguide Propagation of Nonlinear Waves

Waveguide Propagation of Nonlinear Waves PDF

Author: Sergey Leble

Publisher: Springer

Published: 2019-07-03

Total Pages: 288

ISBN-13: 3030226522

DOWNLOAD EBOOK →

This book addresses the peculiarities of nonlinear wave propagation in waveguides and explains how the stratification depends on the waveguide and confinement. An example of this is an optical fibre that does not allow light to pass through a density jump. The book also discusses propagation in the nonlinear regime, which is characterized by a specific waveform and amplitude, to demonstrate so-called solitonic behaviour. In this case, a wave may be strongly localized, and propagates with a weak change in shape. In the waveguide case there are additional contributions of dispersion originating from boundary or asymptotic conditions. Offering concrete guidance on solving application problems, this essentially (more than twice) expanded second edition includes various aspects of guided propagation of nonlinear waves as well as new topics like solitonic behaviour of one-mode and multi-mode excitation and propagation and plasma waveguides, propagation peculiarities of electromagnetic waves in metamaterials, new types of dispersion, dissipation, electromagnetic waveguides, planetary waves and plasma waves interaction.The key feature of the solitonic behaviour is based on Coupled KdV and Coupled NS systems. The systems are derived in this book and solved numerically with the proof of stability and convergence. The domain wall dynamics of ferromagnetic microwaveguides and Bloch waves in nano-waveguides are also included with some problems of magnetic momentum and charge transport.

Optical Communication Systems

Optical Communication Systems PDF

Author: Andrew Ellis

Publisher: CRC Press

Published: 2019-09-02

Total Pages: 358

ISBN-13: 0429650906

DOWNLOAD EBOOK →

Telecommunications have underpinned social interaction and economic activity since the 19th century and have been increasingly reliant on optical fibers since their initial commercial deployment by BT in 1983. Today, mobile phone networks, data centers, and broadband services that facilitate our entertainment, commerce, and increasingly health provision are built on hidden optical fiber networks. However, recently it emerged that the fiber network is beginning to fill up, leading to the talk of a capacity crunch where the capacity still grows but struggles to keep up with the increasing demand. This book, featuring contributions by the suppliers of widely deployed simulation software and academic authors, illustrates the origins of the limited performance of an optical fiber from the engineering, physics, and information theoretic viewpoints. Solutions are then discussed by pioneers in each of the respective fields, with near-term solutions discussed by industrially based authors, and more speculative high-potential solutions discussed by leading academic groups.

The Dynamical Projectors Method

The Dynamical Projectors Method PDF

Author: Sergey Leble

Publisher: CRC Press

Published: 2018-03-12

Total Pages: 226

ISBN-13: 1351107976

DOWNLOAD EBOOK →

The dynamical projectors method proves to reduce a multicomponent problem to the simplest one-component problem with its solution determined by specific initial or boundary conditions. Its universality and application in many different physical problems make it particularly useful in hydrodynamics, electrodynamics, plasma physics, and boundary layer problems. A great variety of underlying mechanisms are included making this book useful for those working in wave theory, hydrodynamics, electromagnetism, and applications. "The authors developed a universal and elegant tool – dynamical projector method. Using this method for very complicated hydro-thermodynamic and electrodynamics problem settings, they were able to get a lot of interesting analytical results in areas where before often just numerical methods were applicable." —L. A. Bordag, University of Applied Sciences Zittau/Görlitz, Zittau, Germany "The book is intended for professionals working in various fields of linear and nonlinear mathematical physics, partial differential equations and theoretical physics. The book is written clearly, and in my opinion, its material will be useful and easy to understand for professionals and for students familiar with ordinary and partial differential equations." —Sergey Dobrokhotov, Russian Academy of Sciences, Moscow, Russia

Nonlinear Fiber Optics

Nonlinear Fiber Optics PDF

Author: Govind Agrawal

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 356

ISBN-13: 0323140742

DOWNLOAD EBOOK →

Nonlinear Fiber Optics deals with various nonlinear phenomena in optical fibers, including wave propagation, group-velocity dispersion, self-phase modulation, optical pulse compression, cross-phase modulation, stimulated Raman scattering and Brillouin scattering, and parametric processes. The implications of various nonlinear effects on the performance of light-wave systems are emphasized throughout. This book consists of 10 chapters and begins with an overview of the fiber characteristics that are important for understanding nonlinear effects in optical fibers. A brief historical perspective of the progress in the field of fiber optics is provided. Fiber properties such as optical loss, chromatic dispersion, and birefringence are discussed. Particular attention is paid to chromatic dispersion because of its importance in the study of nonlinear effects probed by using ultrashort optical pulses. The chapters that follow focus on wave propagation in optical fibers, along with group-velocity dispersion and self-phase modulation. A chapter is devoted to pulse propagation in the region of anomalous group-velocity dispersion, with emphasis on solitons. The book concludes with a discussion of parametric processes such as harmonic generation, four-wave mixing, and parametric amplification. This book is intended for researchers already engaged in or wishing to enter the field of nonlinear fiber optics, for scientists and engineers interested in optical fiber communications, and for graduate students enrolled in courses dealing with nonlinear optics, fiber optics, or optical communications.

Nonlinear Optics

Nonlinear Optics PDF

Author: Karsten Rottwitt

Publisher: CRC Press

Published: 2014-12-11

Total Pages: 345

ISBN-13: 1466565837

DOWNLOAD EBOOK →

This book describes the fundamental aspects of nonlinear optics from basic principles to applications. Starting from the polarization induced by an electric field in a material, it relates the induced polarization to the propagating fields. It describes the properties of the induced polarization through a material response expressed both in the time and frequency domains leading to the nonlinear wave equation. The second part of the book focuses on applications of nonlinear interaction between light and matter, and considers nonlinearities in crystals and optical fibers.

Nonlinear Fiber Optics

Nonlinear Fiber Optics PDF

Author: Govind P. Agrawal

Publisher: Academic Press

Published: 2013-10-22

Total Pages: 612

ISBN-13: 148328803X

DOWNLOAD EBOOK →

The field of nonlinear fiber optics has grown substantially since the First Edition of Nonlinear Fiber Optics, published in 1989. Like the First Edition, this Second Edition is a comprehensive, tutorial, and up-to-date account of nonlinear optical phenomena in fiber optics. It synthesizes widely scattered research material and presents it in an accessible manner for students and researchers already engaged in or wishing to enter the field of nonlinear fiber optics. Particular attention is paid to the importance of nonlinear effects in the design of optical fiber communication systems. This is a completely new book containing either new sections or major revisions in every chapter. Major changes in Soliton-based Communication SystemsNew section on Photonic SwitchingNew section on the Nonlinear Fiber-loop MirrorSection on Second-harmonic Generation will be expanded to include new research materialTwo new chapters have been added on Fiber Amplifiers and Fiber Lasers, two major research areas which have grown significantly during the last 4-5 yearsAll references have been completely updated

Progress in Optical Fibers Research

Progress in Optical Fibers Research PDF

Author: Zhijian Guo

Publisher: Nova Publishers

Published: 2007

Total Pages: 438

ISBN-13: 9781600218682

DOWNLOAD EBOOK →

This book presents new and important research on optical fibres. An optical fibre is a glass or plastic fibre designed to guide light along its length by confining as much light as possible in a propagating form. In fibres with large core diameter, the confinement is based on total internal reflection. In smaller diameter core fibres, (widely used for most communication links longer than 200 meters) the confinement relies on establishing a waveguide. Fibre optics is the overlap of applied science and engineering concerned with such optical fibres. Optical fibres are widely used in fibre-optic communication, which permits transmission over longer distances and at higher data rates than other forms of wired and wireless communications. They are also used to form sensors, and in a variety of other applications. The term optical fibre covers a range of different designs including graded-index optical fibres, step-index optical fibres, birefringent polarisation-maintaining fibres and more recently photonic crystal fibres, with the design and the wavelength of the light propagating in the fiber dictating whether or not it will be multi-mode optical fibre or single-mode optical fibre. Because of the mechanical properties of the more common glass optical fibres, special methods of splicing fibres and of connecting them to other equipment are needed. Manufacture of optical fibres is based on partially melting a chemically doped preform and pulling the flowing material on a draw tower. Fibers are built into different kinds of cables depending on how they will be used.

Fiber Optics

Fiber Optics PDF

Author: Fedor Mitschke

Publisher: Springer

Published: 2016-08-16

Total Pages: 349

ISBN-13: 3662527642

DOWNLOAD EBOOK →

This book tells you all you want to know about optical fibers: Their structure, their light-guiding mechanism, their material and manufacture, their use. It began with telephone, then came telefax and email. Today we use search engines, music downloads and internet videos, all of which require shuffling of bits and bytes by the zillions. The key to all this is the conduit: the line which is designed to carry massive amounts of data at breakneck speed. In their data carrying capacity optical fiber lines beat all other technologies (copper cable, microwave beacons, satellite links) hands down, at least in the long haul; wireless devices rely on fibers, too. Several effects tend to degrade the signal as it travels down the fiber: they are spelled out in detail. Nonlinear processes are given due consideration for a twofold reason: On the one hand they are fundamentally different from the more familiar processes in electrical cable. On the other hand, they form the basis of particularly interesting and innovative applications, provided they are understood well enough. A case in point is the use of so-called solitons, i.e. special pulses of light which have the wonderful property of being able to heal after perturbation. The book will take you from the physical basics of ray and beam optics, explain fiber structure and the functions of optical elements, and bring you to the forefront of both applications and research. The state of the art of high speed data transmission is described, and the use of fiber optic sensors in metrology is treated. The book is written in a pedagogical style so that students of both physics and electrical engineering, as well as technicians and engineers involved in optical technologies, will benefit. The new edition is largely updated and has new sections on nonlinear phenomena in fibers as well as on the latest trends in applications.