Object Tracking Technology

Object Tracking Technology PDF

Author: Ashish Kumar

Publisher: Springer Nature

Published: 2023-10-27

Total Pages: 280

ISBN-13: 9819932882

DOWNLOAD EBOOK →

With the increase in urban population, it became necessary to keep track of the object of interest. In favor of SDGs for sustainable smart city, with the advancement in technology visual tracking extends to track multi-target present in the scene rather estimating location for single target only. In contrast to single object tracking, multi-target introduces one extra step of detection. Tracking multi-target includes detecting and categorizing the target into multiple classes in the first frame and provides each individual target an ID to keep its track in the subsequent frames of a video stream. One category of multi-target algorithms exploits global information to track the target of the detected target. On the other hand, some algorithms consider present and past information of the target to provide efficient tracking solutions. Apart from these, deep leaning-based algorithms provide reliable and accurate solutions. But, these algorithms are computationally slow when applied in real-time. This book presents and summarizes the various visual tracking algorithms and challenges in the domain. The various feature that can be extracted from the target and target saliency prediction is also covered. It explores a comprehensive analysis of the evolution from traditional methods to deep learning methods, from single object tracking to multi-target tracking. In addition, the application of visual tracking and the future of visual tracking can also be introduced to provide the future aspects in the domain to the reader. This book also discusses the advancement in the area with critical performance analysis of each proposed algorithm. This book will be formulated with intent to uncover the challenges and possibilities of efficient and effective tracking of single or multi-object, addressing the various environmental and hardware challenges. The intended audience includes academicians, engineers, postgraduate students, developers, professionals, military personals, scientists, data analysts, practitioners, and people who are interested in exploring more about tracking.· Another projected audience are the researchers and academicians who identify and develop methodologies, frameworks, tools, and applications through reference citations, literature reviews, quantitative/qualitative results, and discussions.

Object Detection and Recognition in Digital Images

Object Detection and Recognition in Digital Images PDF

Author: Boguslaw Cyganek

Publisher: John Wiley & Sons

Published: 2013-05-20

Total Pages: 518

ISBN-13: 111861836X

DOWNLOAD EBOOK →

Object detection, tracking and recognition in images are key problems in computer vision. This book provides the reader with a balanced treatment between the theory and practice of selected methods in these areas to make the book accessible to a range of researchers, engineers, developers and postgraduate students working in computer vision and related fields. Key features: Explains the main theoretical ideas behind each method (which are augmented with a rigorous mathematical derivation of the formulas), their implementation (in C++) and demonstrated working in real applications. Places an emphasis on tensor and statistical based approaches within object detection and recognition. Provides an overview of image clustering and classification methods which includes subspace and kernel based processing, mean shift and Kalman filter, neural networks, and k-means methods. Contains numerous case study examples of mainly automotive applications. Includes a companion website hosting full C++ implementation, of topics presented in the book as a software library, and an accompanying manual to the software platform.

Fundamentals of Object Tracking

Fundamentals of Object Tracking PDF

Author:

Publisher: Cambridge University Press

Published: 2011-07-28

Total Pages: 389

ISBN-13: 0521876281

DOWNLOAD EBOOK →

Introduces object tracking algorithms from a unified, recursive Bayesian perspective, along with performance bounds and illustrative examples.

Deep Learning for Computer Vision

Deep Learning for Computer Vision PDF

Author: Jason Brownlee

Publisher: Machine Learning Mastery

Published: 2019-04-04

Total Pages: 564

ISBN-13:

DOWNLOAD EBOOK →

Step-by-step tutorials on deep learning neural networks for computer vision in python with Keras.

Video-Based Surveillance Systems

Video-Based Surveillance Systems PDF

Author: Graeme A. Jones

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 277

ISBN-13: 1461509130

DOWNLOAD EBOOK →

Monitoring of public and private sites has increasingly become a very sensitive issue resulting in a patchwork of privacy laws varying from country to country -though all aimed at protecting the privacy of the citizen. It is important to remember, however, that monitoring and vi sual surveillance capabilities can also be employed to aid the citizen. The focus of current development is primarily aimed at public and cor porate safety applications including the monitoring of railway stations, airports, and inaccessible or dangerous environments. Future research effort, however, has already targeted citizen-oriented applications such as monitoring assistants for the aged and infirm, route-planning and congestion-avoidance tools, and a range of environment al monitoring applications. The latest generation of surveillance systems has eagerly adopted re cent technological developments to produce a fully digital pipeline of digital image acquisition, digital data transmission and digital record ing. The resultant surveillance products are highly-fiexihle, capahle of generating forensic-quality imagery, and ahle to exploit existing Internet and wide area network services to provide remote monitoring capability.

Examining the Impact of Deep Learning and IoT on Multi-Industry Applications

Examining the Impact of Deep Learning and IoT on Multi-Industry Applications PDF

Author: Raut, Roshani

Publisher: IGI Global

Published: 2021-01-29

Total Pages: 304

ISBN-13: 1799875172

DOWNLOAD EBOOK →

Deep learning, as a recent AI technique, has proven itself efficient in solving many real-world problems. Deep learning algorithms are efficient, high performing, and an effective standard for solving these problems. In addition, with IoT, deep learning is in many emerging and developing domains of computer technology. Deep learning algorithms have brought a revolution in computer vision applications by introducing an efficient solution to several image processing-related problems that have long remained unresolved or moderately solved. Various significant IoT technologies in various industries, such as education, health, transportation, and security, combine IoT with deep learning for complex problem solving and the supported interaction between human beings and their surroundings. Examining the Impact of Deep Learning and IoT on Multi-Industry Applications provides insights on how deep learning, together with IoT, impacts various sectors such as healthcare, agriculture, cyber security, and social media analysis applications. The chapters present solutions to various real-world problems using these methods from various researchers’ points of view. While highlighting topics such as medical diagnosis, power consumption, livestock management, security, and social media analysis, this book is ideal for IT specialists, technologists, security analysts, medical practitioners, imaging specialists, diagnosticians, academicians, researchers, industrial experts, scientists, and undergraduate and postgraduate students who are working in the field of computer engineering, electronics, and electrical engineering.

Device-Free Object Tracking Using Passive Tags

Device-Free Object Tracking Using Passive Tags PDF

Author: Jinsong Han

Publisher: Springer

Published: 2014-11-21

Total Pages: 66

ISBN-13: 3319126466

DOWNLOAD EBOOK →

This SpringerBrief examines the use of cheap commercial passive RFID tags to achieve accurate device-free object-tracking. It presents a sensitive detector, named Twins, which uses a pair of adjacent passive tags to detect uncooperative targets (such as intruders). Twins leverages a newly observed phenomenon called critical state that is caused by interference among passive tags. The author expands on the previous object tracking methods, which are mostly device-based, and reveals a new interference model and their extensive experiments for validation. A prototype implementation of the Twins-based intrusion detection scheme with commercial off-the-shelf reader and tags is also covered in this SpringerBrief. Device-Free Object Tracking Using Passive Tags is designed for researchers and professionals interested in smart sensing, localization, RFID and Internet of Things applications. The content is also useful for advanced-level students studying electrical engineering and computer science.

Video Analytics for Business Intelligence

Video Analytics for Business Intelligence PDF

Author: Caifeng Shan

Publisher: Springer Science & Business Media

Published: 2012-04-07

Total Pages: 374

ISBN-13: 364228597X

DOWNLOAD EBOOK →

Closed Circuit TeleVision (CCTV) cameras have been increasingly deployed pervasively in public spaces including retail centres and shopping malls. Intelligent video analytics aims to automatically analyze content of massive amount of public space video data and has been one of the most active areas of computer vision research in the last two decades. Current focus of video analytics research has been largely on detecting alarm events and abnormal behaviours for public safety and security applications. However, increasingly CCTV installations have also been exploited for gathering and analyzing business intelligence information, in order to enhance marketing and operational efficiency. For example, in retail environments, surveillance cameras can be utilised to collect statistical information about shopping behaviour and preference for marketing (e.g., how many people entered a shop; how many females/males or which age groups of people showed interests to a particular product; how long did they stay in the shop; and what are the frequent paths), and to measure operational efficiency for improving customer experience. Video analytics has the enormous potential for non-security oriented commercial applications. This book presents the latest developments on video analytics for business intelligence applications. It provides both academic and commercial practitioners an understanding of the state-of-the-art and a resource for potential applications and successful practice.