Numerical Methods in Software and Analysis

Numerical Methods in Software and Analysis PDF

Author: John R. Rice

Publisher: Elsevier

Published: 2014-05-19

Total Pages: 737

ISBN-13: 1483295680

DOWNLOAD EBOOK →

Numerical Methods, Software, and Analysis, Second Edition introduces science and engineering students to the methods, tools, and ideas of numerical computation. Introductory courses in numerical methods face a fundamental problem—there is too little time to learn too much. This text solves that problem by using high-quality mathematical software. In fact, the objective of the text is to present scientific problem solving using standard mathematical software. This book discusses numerous programs and software packages focusing on the IMSL library (including the PROTRAN system) and ACM Algorithms. The book is organized into three parts. Part I presents the background material. Part II presents the principal methods and ideas of numerical computation. Part III contains material about software engineering and performance evaluation. A uniform approach is used in each area of numerical computation. First, an intuitive development is made of the problems and the basic methods for their solution. Then, relevant mathematical software is reviewed and its use outlined. Many areas provide extensive examples and case studies. Finally, a deeper analysis of the methods is presented as in traditional numerical analysis texts. Emphasizes the use of high-quality mathematical software for numerical computation Extensive use of IMSL routines Features extensive examples and case studies

Numerical Computation 1

Numerical Computation 1 PDF

Author: Christoph W. Ueberhuber

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 494

ISBN-13: 3642591183

DOWNLOAD EBOOK →

This book deals with various aspects of scientific numerical computing. No at tempt was made to be complete or encyclopedic. The successful solution of a numerical problem has many facets and consequently involves different fields of computer science. Computer numerics- as opposed to computer algebra- is thus based on applied mathematics, numerical analysis and numerical computation as well as on certain areas of computer science such as computer architecture and operating systems. Applied Mathemalies I I I Numerical Analysis Analysis, Algebra I I Numerical Computation Symbolic Computation I Operating Systems Computer Hardware Each chapter begins with sample situations taken from specific fields of appli cation. Abstract and general formulations of mathematical problems are then presented. Following this abstract level, a general discussion about principles and methods for the numerical solution of mathematical problems is presented. Relevant algorithms are developed and their efficiency and the accuracy of their results is assessed. It is then explained as to how they can be obtained in the form of numerical software. The reader is presented with various ways of applying the general methods and principles to particular classes of problems and approaches to extracting practically useful solutions with appropriately chosen numerical software are developed. Potential difficulties and obstacles are examined, and ways of avoiding them are discussed. The volume and diversity of all the available numerical software is tremendous.

Numerical Methods

Numerical Methods PDF

Author: Anne Greenbaum

Publisher: Princeton University Press

Published: 2012-04-01

Total Pages: 471

ISBN-13: 1400842670

DOWNLOAD EBOOK →

A rigorous and comprehensive introduction to numerical analysis Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects—design, analysis, or computer implementation—of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book also includes polynomial interpolation at Chebyshev points, use of the MATLAB package Chebfun, and a section on the fast Fourier transform. Supplementary materials are available online. Clear and concise exposition of standard numerical analysis topics Explores nontraditional topics, such as mathematical modeling and Monte Carlo methods Covers modern applications, including information retrieval and animation, and classical applications from physics and engineering Promotes understanding of computational results through MATLAB exercises Provides flexibility so instructors can emphasize mathematical or applied/computational aspects of numerical methods or a combination Includes recent results on polynomial interpolation at Chebyshev points and use of the MATLAB package Chebfun Short discussions of the history of numerical methods interspersed throughout Supplementary materials available online

Computational Methods for Numerical Analysis with R

Computational Methods for Numerical Analysis with R PDF

Author: James P Howard, II

Publisher: CRC Press

Published: 2017-07-12

Total Pages: 257

ISBN-13: 1498723640

DOWNLOAD EBOOK →

Computational Methods for Numerical Analysis with R is an overview of traditional numerical analysis topics presented using R. This guide shows how common functions from linear algebra, interpolation, numerical integration, optimization, and differential equations can be implemented in pure R code. Every algorithm described is given with a complete function implementation in R, along with examples to demonstrate the function and its use. Computational Methods for Numerical Analysis with R is intended for those who already know R, but are interested in learning more about how the underlying algorithms work. As such, it is suitable for statisticians, economists, and engineers, and others with a computational and numerical background.

Numerical Methods in Scientific Computing:

Numerical Methods in Scientific Computing: PDF

Author: Germund Dahlquist

Publisher: SIAM

Published: 2008-09-04

Total Pages: 741

ISBN-13: 0898716446

DOWNLOAD EBOOK →

This work addresses the increasingly important role of numerical methods in science and engineering. It combines traditional and well-developed topics with other material such as interval arithmetic, elementary functions, operator series, convergence acceleration, and continued fractions.

An Introduction to Numerical Methods and Analysis

An Introduction to Numerical Methods and Analysis PDF

Author: James F. Epperson

Publisher: John Wiley & Sons

Published: 2013-06-06

Total Pages: 579

ISBN-13: 1118626230

DOWNLOAD EBOOK →

Praise for the First Edition ". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises." —Zentrablatt Math ". . . carefully structured with many detailed worked examples . . ." —The Mathematical Gazette ". . . an up-to-date and user-friendly account . . ." —Mathematika An Introduction to Numerical Methods and Analysis addresses the mathematics underlying approximation and scientific computing and successfully explains where approximation methods come from, why they sometimes work (or don't work), and when to use one of the many techniques that are available. Written in a style that emphasizes readability and usefulness for the numerical methods novice, the book begins with basic, elementary material and gradually builds up to more advanced topics. A selection of concepts required for the study of computational mathematics is introduced, and simple approximations using Taylor's Theorem are also treated in some depth. The text includes exercises that run the gamut from simple hand computations, to challenging derivations and minor proofs, to programming exercises. A greater emphasis on applied exercises as well as the cause and effect associated with numerical mathematics is featured throughout the book. An Introduction to Numerical Methods and Analysis is the ideal text for students in advanced undergraduate mathematics and engineering courses who are interested in gaining an understanding of numerical methods and numerical analysis.

Numerical Analysis for Statisticians

Numerical Analysis for Statisticians PDF

Author: Kenneth Lange

Publisher: Springer Science & Business Media

Published: 2010-05-17

Total Pages: 606

ISBN-13: 1441959459

DOWNLOAD EBOOK →

Numerical analysis is the study of computation and its accuracy, stability and often its implementation on a computer. This book focuses on the principles of numerical analysis and is intended to equip those readers who use statistics to craft their own software and to understand the advantages and disadvantages of different numerical methods.

The Numerical Methods Programming Projects Book

The Numerical Methods Programming Projects Book PDF

Author: Thomas Allan Grandine

Publisher: Oxford University Press, USA

Published: 1990

Total Pages: 170

ISBN-13:

DOWNLOAD EBOOK →

Traditional numerical analysis books concentrate either on the mathematical or programming aspects of numerical algorithms. This textbook is different inasmuch as it emphasizes the relevance of these techniques to the real world and the use of a widely available library of numerical software in their application. The book consists of 22 carefully graded projects which will lead the reader through the techniques typically taught as part of a first course in numerical analysis. Throughout the reader is presented with projects which reflect very real problems that occur in science and industry. At the same time, the reader becomes accustomed to using a good library of numerical software when writing their programs. It is a theme of this book that the use of a solid, robust and bug-free software library will improve computational results and minimize the effort of programming. By integrating the use of the NAG (Numerical Algorithms Group) FORTRAN library into the projects, students will develop experience and expertise in the use of a software library and, by practical example, be better prepared for working further with numerical analysis libraries. This lively and entertaining text will provide a valuable complement to more traditional numerical analysis books. Answers to exercises are included as well as full documentation of the relevant library routines used.