Numerical Methods in Software and Analysis

Numerical Methods in Software and Analysis PDF

Author: John R. Rice

Publisher: Elsevier

Published: 2014-05-19

Total Pages: 737

ISBN-13: 1483295680

DOWNLOAD EBOOK →

Numerical Methods, Software, and Analysis, Second Edition introduces science and engineering students to the methods, tools, and ideas of numerical computation. Introductory courses in numerical methods face a fundamental problem—there is too little time to learn too much. This text solves that problem by using high-quality mathematical software. In fact, the objective of the text is to present scientific problem solving using standard mathematical software. This book discusses numerous programs and software packages focusing on the IMSL library (including the PROTRAN system) and ACM Algorithms. The book is organized into three parts. Part I presents the background material. Part II presents the principal methods and ideas of numerical computation. Part III contains material about software engineering and performance evaluation. A uniform approach is used in each area of numerical computation. First, an intuitive development is made of the problems and the basic methods for their solution. Then, relevant mathematical software is reviewed and its use outlined. Many areas provide extensive examples and case studies. Finally, a deeper analysis of the methods is presented as in traditional numerical analysis texts. Emphasizes the use of high-quality mathematical software for numerical computation Extensive use of IMSL routines Features extensive examples and case studies

Numerical Computation 1

Numerical Computation 1 PDF

Author: Christoph W. Ueberhuber

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 494

ISBN-13: 3642591183

DOWNLOAD EBOOK →

This book deals with various aspects of scientific numerical computing. No at tempt was made to be complete or encyclopedic. The successful solution of a numerical problem has many facets and consequently involves different fields of computer science. Computer numerics- as opposed to computer algebra- is thus based on applied mathematics, numerical analysis and numerical computation as well as on certain areas of computer science such as computer architecture and operating systems. Applied Mathemalies I I I Numerical Analysis Analysis, Algebra I I Numerical Computation Symbolic Computation I Operating Systems Computer Hardware Each chapter begins with sample situations taken from specific fields of appli cation. Abstract and general formulations of mathematical problems are then presented. Following this abstract level, a general discussion about principles and methods for the numerical solution of mathematical problems is presented. Relevant algorithms are developed and their efficiency and the accuracy of their results is assessed. It is then explained as to how they can be obtained in the form of numerical software. The reader is presented with various ways of applying the general methods and principles to particular classes of problems and approaches to extracting practically useful solutions with appropriately chosen numerical software are developed. Potential difficulties and obstacles are examined, and ways of avoiding them are discussed. The volume and diversity of all the available numerical software is tremendous.

Numerical Methods

Numerical Methods PDF

Author: Anne Greenbaum

Publisher: Princeton University Press

Published: 2012-04-01

Total Pages: 471

ISBN-13: 1400842670

DOWNLOAD EBOOK →

A rigorous and comprehensive introduction to numerical analysis Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects—design, analysis, or computer implementation—of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book also includes polynomial interpolation at Chebyshev points, use of the MATLAB package Chebfun, and a section on the fast Fourier transform. Supplementary materials are available online. Clear and concise exposition of standard numerical analysis topics Explores nontraditional topics, such as mathematical modeling and Monte Carlo methods Covers modern applications, including information retrieval and animation, and classical applications from physics and engineering Promotes understanding of computational results through MATLAB exercises Provides flexibility so instructors can emphasize mathematical or applied/computational aspects of numerical methods or a combination Includes recent results on polynomial interpolation at Chebyshev points and use of the MATLAB package Chebfun Short discussions of the history of numerical methods interspersed throughout Supplementary materials available online

Computational Methods for Numerical Analysis with R

Computational Methods for Numerical Analysis with R PDF

Author: James P Howard, II

Publisher: CRC Press

Published: 2017-07-12

Total Pages: 257

ISBN-13: 1498723640

DOWNLOAD EBOOK →

Computational Methods for Numerical Analysis with R is an overview of traditional numerical analysis topics presented using R. This guide shows how common functions from linear algebra, interpolation, numerical integration, optimization, and differential equations can be implemented in pure R code. Every algorithm described is given with a complete function implementation in R, along with examples to demonstrate the function and its use. Computational Methods for Numerical Analysis with R is intended for those who already know R, but are interested in learning more about how the underlying algorithms work. As such, it is suitable for statisticians, economists, and engineers, and others with a computational and numerical background.

Fundamentals of Numerical Computation

Fundamentals of Numerical Computation PDF

Author: Tobin A. Driscoll

Publisher: SIAM

Published: 2017-12-21

Total Pages: 583

ISBN-13: 1611975085

DOWNLOAD EBOOK →

Fundamentals of Numerical Computation?is an advanced undergraduate-level introduction to the mathematics and use of algorithms for the fundamental problems of numerical computation: linear algebra, finding roots, approximating data and functions, and solving differential equations. The book is organized with simpler methods in the first half and more advanced methods in the second half, allowing use for either a single course or a sequence of two courses. The authors take readers from basic to advanced methods, illustrating them with over 200 self-contained MATLAB functions and examples designed for those with no prior MATLAB experience. Although the text provides many examples, exercises, and illustrations, the aim of the authors is not to provide a cookbook per se, but rather an exploration of the principles of cooking. The authors have developed an online resource that includes well-tested materials related to every chapter. Among these materials are lecture-related slides and videos, ideas for student projects, laboratory exercises, computational examples and scripts, and all the functions presented in the book. The book is intended for advanced undergraduates in math, applied math, engineering, or science disciplines, as well as for researchers and professionals looking for an introduction to a subject they missed or overlooked in their education.?

The Numerical Methods Programming Projects Book

The Numerical Methods Programming Projects Book PDF

Author: Thomas Allan Grandine

Publisher: Oxford University Press, USA

Published: 1990

Total Pages: 170

ISBN-13:

DOWNLOAD EBOOK →

Traditional numerical analysis books concentrate either on the mathematical or programming aspects of numerical algorithms. This textbook is different inasmuch as it emphasizes the relevance of these techniques to the real world and the use of a widely available library of numerical software in their application. The book consists of 22 carefully graded projects which will lead the reader through the techniques typically taught as part of a first course in numerical analysis. Throughout the reader is presented with projects which reflect very real problems that occur in science and industry. At the same time, the reader becomes accustomed to using a good library of numerical software when writing their programs. It is a theme of this book that the use of a solid, robust and bug-free software library will improve computational results and minimize the effort of programming. By integrating the use of the NAG (Numerical Algorithms Group) FORTRAN library into the projects, students will develop experience and expertise in the use of a software library and, by practical example, be better prepared for working further with numerical analysis libraries. This lively and entertaining text will provide a valuable complement to more traditional numerical analysis books. Answers to exercises are included as well as full documentation of the relevant library routines used.

NUMERICAL ANALYSIS

NUMERICAL ANALYSIS PDF

Author: Vinay Vachharajani

Publisher: BPB Publications

Published: 2018-06-01

Total Pages: 594

ISBN-13: 9387284611

DOWNLOAD EBOOK →

Description:This book is Designed to serve as a text book for the undergraduate as well as post graduate students of Mathematics, Engineering, Computer Science.COVERAGE:Concept of numbers and their accuracy, binary and decimal number system, limitations of floating point representation.Concept of error and their types, propagation of errors through process graph.Iterative methods for finding the roots of algebraic and transcendental equations with their convergence, methods to solve the set of non-linear equations, methods to obtain complex roots.Concept of matrices, the direct and iterative methods to solve a system of linear algebraic equations.Finite differences, interpolation and extrapolation methods, cubic spline, concept of curve fitting.Differentiation and integration methods.Solution of ordinary and partial differential equations SALIENT FEATURES:Chapters include objectives, learning outcomes, multiple choice questions, exercises for practice and solutions.Programs are written in C Language for Numerical methods.Topics are explained with suitable examples.Arrangement (Logical order), clarity, detailed presentation and explanation of each topic with numerous solved and unsolved examples.Concise but lucid and student friendly presentation for derivation of formulas used in various numerical methods. Table Of Contents:Computer ArithmeticError Analysis Solution of Algebraic and Transcendental Equations Solution of System of Linear Equations and Eigen value Problems Finite Differences Interpolation Curve Fitting and Approximation Numerical Differentiation Numerical Integration Difference Equations Numerical Solution of Ordinary Differential Equations Numerical Solution of Partial Differential Equations Appendix - I Case Studies / Applications Appendix - II Synthetic Division Bibliography Index

Numerical Analysis or Numerical Method in Symmetry

Numerical Analysis or Numerical Method in Symmetry PDF

Author: Clemente Cesarano

Publisher: MDPI

Published: 2020-02-21

Total Pages: 194

ISBN-13: 3039283723

DOWNLOAD EBOOK →

This Special Issue focuses mainly on techniques and the relative formalism typical of numerical methods and therefore of numerical analysis, more generally. These fields of study of mathematics represent an important field of investigation both in the field of applied mathematics and even more exquisitely in the pure research of the theory of approximation and the study of polynomial relations as well as in the analysis of the solutions of the differential equations both ordinary and partial derivatives. Therefore, a substantial part of research on the topic of numerical analysis cannot exclude the fundamental role played by approximation theory and some of the tools used to develop this research. In this Special Issue, we want to draw attention to the mathematical methods used in numerical analysis, such as special functions, orthogonal polynomials, and their theoretical tools, such as Lie algebra, to study the concepts and properties of some special and advanced methods, which are useful in the description of solutions of linear and nonlinear differential equations. A further field of investigation is dedicated to the theory and related properties of fractional calculus with its adequate application to numerical methods.