Numerical Methods for Fluids, Part 3

Numerical Methods for Fluids, Part 3 PDF

Author: P.G. Ciarlet

Publisher: North-Holland is

Published: 1990

Total Pages: 1196

ISBN-13:

DOWNLOAD EBOOK →

This book-size article is dedicated to the numerical simulation of unsteady incompressible viscous flow modelled by the Navier-Stokes equations, or by non-Newtonian variants of them. In order to achieve this goal a methodology has been developed based on four key tools. Time discretization by operator-splitting schemes such as Peaceman-Rachford's, Douglas Rachford's, Marchuk-Yanenko's, Strang's symmetrized, and the so-called theta-scheme introduced by the author in the mid-1980s. Projection methods (in L2 or H1) for the treatment of the incompressibility condition div u = 0. Treatment of the advection by: either a centered scheme leading to linear or nonlinear advection-diffusion problems solved by least squares/conjugate gradient algorithms, or to a linear wave-like equation well suited to finite element-based solution methods. Space approximation by finite element methods such as Hood-Taylor and Bercovier-Pironneau, which are relatively easy to implement. conjugate gradient algorithms, least-squares methods for boundary-value problems which are not equivalent to problems of the calculus of variations, Uzawa-type algorithms for the solution of saddle-point problems, embedding/fictitious domain methods for the solution of elliptic and parabolic problems. In fact many computational methods discussed in this article also apply to non-CFD problems although they were mostly designed for the solution of flow problems. Among the topics covered are: the direct numerical simulation of particulate flow; computational methods for flow control; splitting methods for viso-plastic flow a la Bingham; and more. It should also be mentioned that most methods discussed in this article are illustrated by the results of numerical experiments, including the simulation of three-dimensional flow. easy to implement - as is demonstrated by the fact that several practitioners in various institutions have been able to use them ab initio for the solution of complicated flow (and other) problems.

Handbook of Numerical Analysis

Handbook of Numerical Analysis PDF

Author: Philippe G. Ciarlet

Publisher: Gulf Professional Publishing

Published: 1990

Total Pages: 1187

ISBN-13: 9780444512246

DOWNLOAD EBOOK →

Includes following subjects: Solution of equations in Rn, Finite difference methods, Finite element methods, Techniques of scientific computing, Optimization theory and systems science, Numerical methods for fluids, Numerical methods for solids, Specific applications

Riemann Solvers and Numerical Methods for Fluid Dynamics

Riemann Solvers and Numerical Methods for Fluid Dynamics PDF

Author: Eleuterio F. Toro

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 635

ISBN-13: 366203915X

DOWNLOAD EBOOK →

High resolution upwind and centered methods are today a mature generation of computational techniques applicable to a wide range of engineering and scientific disciplines, Computational Fluid Dynamics (CFD) being the most prominent up to now. This textbook gives a comprehensive, coherent and practical presentation of this class of techniques. The book is designed to provide readers with an understanding of the basic concepts, some of the underlying theory, the ability to critically use the current research papers on the subject, and, above all, with the required information for the practical implementation of the methods. Applications include: compressible, steady, unsteady, reactive, viscous, non-viscous and free surface flows.

Numerical Methods for Fluid Dynamics

Numerical Methods for Fluid Dynamics PDF

Author: Dale R. Durran

Publisher: Springer Science & Business Media

Published: 2010-09-14

Total Pages: 516

ISBN-13: 1441964126

DOWNLOAD EBOOK →

This scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean

Numerical Methods for Non-Newtonian Fluids

Numerical Methods for Non-Newtonian Fluids PDF

Author:

Publisher: Elsevier

Published: 2010-12-20

Total Pages: 824

ISBN-13: 0080932029

DOWNLOAD EBOOK →

Non-Newtonian flows and their numerical simulations have generated an abundant literature, as well as many publications and references to which can be found in this volume’s articles. This abundance of publications can be explained by the fact that non-Newtonian fluids occur in many real life situations: the food industry, oil & gas industry, chemical, civil and mechanical engineering, the bio-Sciences, to name just a few. Mathematical and numerical analysis of non-Newtonian fluid flow models provide challenging problems to partial differential equations specialists and applied computational mathematicians alike. This volume offers investigations. Results and conclusions that will no doubt be useful to engineers and computational and applied mathematicians who are focused on various aspects of non-Newtonian Fluid Mechanics. New review of well-known computational methods for the simulation viscoelastic and viscoplastic types.; Discusses new numerical methods that have proven to be more efficient and more accurate than traditional methods.; Articles that discuss the numerical simulation of particulate flow for viscoelastic fluids.;

Numerical Methods for Non-Newtonian Fluids

Numerical Methods for Non-Newtonian Fluids PDF

Author: Philippe G. Ciarlet

Publisher: Elsevier

Published: 1990

Total Pages: 827

ISBN-13: 0444530479

DOWNLOAD EBOOK →

Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations.

Handbook of Numerical Analysis

Handbook of Numerical Analysis PDF

Author: Philippe G. Ciarlet

Publisher: Gulf Professional Publishing

Published: 1990

Total Pages: 698

ISBN-13: 9780444509062

DOWNLOAD EBOOK →

Includes following subjects: Solution of equations in Rn, Finite difference methods, Finite element methods, Techniques of scientific computing, Optimization theory and systems science, Numerical methods for fluids, Numerical methods for solids, Specific applications