Nonthermal Plasma Surface Modification of Materials

Nonthermal Plasma Surface Modification of Materials PDF

Author: Masaaki Okubo

Publisher: Springer Nature

Published: 2023-12-02

Total Pages: 219

ISBN-13: 9819945062

DOWNLOAD EBOOK →

This book describes the fundamentals and applicability of the atmospheric-pressure non-thermal plasma surface modification of materials. Non-thermal plasma modification is an effective procedure for chemical activation. In this book, the principles of non-thermal plasma surface modification and its application to various machine parts are described. By reading this book, technologists from a variety of fields can learn about plasma generation and surface treatment technology, which will assist them in performing advanced procedures. This book also explains the basics of atmospheric-pressure plasma and the principle of plasma treatment in an easy-to-understand manner and also provides examples of the application of atmospheric-pressure plasma surface modification technologies to plastics, glass, polymers, and metals. After reading this book, readers can get the knowledge that researchers need to apply the methodology to meet their own research goals. The book is self-contained in the sense that it spans the divide between the fundamentals and more advanced content regarding applications. Many engineers and graduate students working in this field get many helps.

Non-Thermal Plasma Technology for Polymeric Materials

Non-Thermal Plasma Technology for Polymeric Materials PDF

Author: Sabu Thomas

Publisher: Elsevier

Published: 2018-10-08

Total Pages: 494

ISBN-13: 0128131535

DOWNLOAD EBOOK →

Non-Thermal Plasma Technology for Polymeric Materials: Applications in Composites, Nanostructured Materials and Biomedical Fields provides both an introduction and practical guide to plasma synthesis, modification and processing of polymers, their composites, nancomposites, blends, IPNs and gels. It examines the current state-of-the-art and new challenges in the field, including the use of plasma treatment to enhance adhesion, characterization techniques, and the environmental aspects of the process. Particular attention is paid to the effects on the final properties of composites and the characterization of fiber/polymer surface interactions. This book helps demystify the process of plasma polymerization, providing a thorough grounding in the fundamentals of plasma technology as they relate to polymers. It is ideal for materials scientists, polymer chemists, and engineers, acting as a guide to further research into new applications of this technology in the real world. Enables materials scientists and engineers to deploy plasma technology for surface treatment, characterization and analysis of polymeric materials Reviews the state-of-the-art in plasma technology for polymer synthesis and processing Presents detailed coverage of the most advanced applications for plasma polymerization, particularly in medicine and biomedical engineering, areas such as implants, biosensors and tissue engineering

Plasma Modification of Polyolefins

Plasma Modification of Polyolefins PDF

Author: N. S. Baneesh

Publisher: Springer Nature

Published: 2021-11-22

Total Pages: 262

ISBN-13: 3030522644

DOWNLOAD EBOOK →

This book addresses plasma modification of polyolefin surfaces. It comprises 21 chapters divided into three major sections. The first section covers the different techniques used for plasma modification of polyolefin surfaces and the effects of various gases as a surrounding medium, while the second provides a detailed analysis of the physics and chemistry of plasma modification and discusses various innovative characterization techniques, as well as ageing of the modified surface. It focuses on the analysis of changes in polymers’ surface chemistry using various spectroscopic techniques, and of changes in their surface morphology after plasma treatment using optical microscopy, electron microscopy and atomic force microscopy. In addition, it provides detailed information on the characterization of modified polymer surfaces. The book’s third and last section covers a range of applications of plasma-modified polyolefin surfaces varying from the packaging industry to the biomedical field, and shares valuable insights on the lifecycle analysis of plasma modification and modified surfaces.

Nonthermal Plasmas for Materials Processing

Nonthermal Plasmas for Materials Processing PDF

Author: Jörg Florian Friedrich

Publisher: John Wiley & Sons

Published: 2022-07-15

Total Pages: 805

ISBN-13: 1119364760

DOWNLOAD EBOOK →

NONTHERMAL PLASMAS FOR MATERIALS PROCESSING This unique book covers the physical and chemical aspects of plasma chemistry with polymers and gives new insights into the interaction of physics and chemistry of nonthermal plasmas and their applications in materials science for physicists and chemists. The properties and characteristics of plasmas, elementary (collision) processes in the gas phase, plasma surface interactions, gas discharge plasmas and technical plasma sources, atmospheric plasmas, plasma diagnostics, polymers and plasmas, plasma polymerization, post-plasma processes, plasma, and wet-chemical processing, plasma-induced generation of functional groups, and the chemical reactions on these groups along with a few exemplary applications are discussed in this comprehensive but condensed state-of-the-art book on plasma chemistry and its dependence on plasma physics. While plasma physics, plasma chemistry, and polymer science are often handled separately, the aim of the authors is to harmoniously join the physics and chemistry of low-pressure and atmospheric-pressure plasmas with polymer surface chemistry and polymerization and to compare such chemistry with classic chemistry. Readers will find in these chapters Interaction of plasma physics and chemistry in plasmas and at the surface of polymers; Explanation and interpretation of physical and chemical mechanisms on plasma polymerization and polymer surface modification; Introduction of modern techniques in plasma diagnostics, surface analysis of solids, and special behavior of polymers on exposure to plasmas; Discussion of the conflict of energy-rich plasma species with permanent energy supply and the much lower binding energies in polymers and alternatives to avoid random polymer decomposition Technical applications such as adhesion, cleaning, wettability, textile modification, coatings, films, etc. New perspectives are explained about how to use selective and mild processes to allow post-plasma chemistry on non-degraded polymer surfaces. Audience Physicists, polymer chemists, materials scientists, industrial engineers in biomedicine, coatings, printing, etc.

Surface Modification to Improve Properties of Materials

Surface Modification to Improve Properties of Materials PDF

Author: Miran Mozetič

Publisher: MDPI

Published: 2019-04-16

Total Pages: 356

ISBN-13: 3038977969

DOWNLOAD EBOOK →

This book contains selected contributions on surface modification to improve the properties of solid materials. The surface properties are tailored either by functionalization, etching, or deposition of a thin coating. Functionalization is achieved by a brief treatment with non-equilibrium gaseous plasma containing suitable radicals that interact chemically with the material surface and thus enable the formation of rather stable functional groups. Etching is performed in order to modify the surface morphology. The etching parameters are selected in such a way that a rich morphology of the surfaces is achieved spontaneously on the sub-micrometer scale, without using masks. The combination of adequate surface morphology and functionalization of materials leads to superior surface properties which are particularly beneficial for the desired response upon incubation with biological matter. Alternatively, the materials are coated with a suitable thin film that is useful in various applications from food to aerospace industries.

Applications of Plasma Technologies to Material Processing

Applications of Plasma Technologies to Material Processing PDF

Author: Giorgio Speranza

Publisher: CRC Press

Published: 2019-04-10

Total Pages: 121

ISBN-13: 0429555202

DOWNLOAD EBOOK →

This book provides a survey of the latest research and developments in plasma technology. In an easy and comprehensive manner, it explores what plasma is and the technologies utilized to produce plasma. It then investigates the main applications and their benefits. Different from other books on the topic that focus on specific aspects of plasma technology, the intention is to provide an introduction to all aspects related to plasma technologies. This book will be an ideal resource for graduate students studying plasma technologies, in addition to researchers in physics, engineering, and materials science Features Accessible and easy to understand Provides simple yet exhaustive explanations of the foundations Explores the latest technologies and is filled with practical applications and case studies

Atmospheric Pressure Plasma for Surface Modification

Atmospheric Pressure Plasma for Surface Modification PDF

Author: Rory A. Wolf

Publisher: John Wiley & Sons

Published: 2012-11-08

Total Pages: 268

ISBN-13: 1118547551

DOWNLOAD EBOOK →

This Book's focus and intent is to impart an understanding of the practical application of atmospheric plasma for the advancement of a wide range of current and emerging technologies. The primary key feature of this book is the introduction of over thirteen years of practical experimental evidence of successful surface modifications by atmospheric plasma methods. It offers a handbook-based approach for leveraging and optimizing atmospheric plasma technologies which are currently in commercial use. It also offers a complete treatment of both basic plasma physics and industrial plasma processing with the intention of becoming a primary reference for students and professionals. The reader will learn the mechanisms which control and operate atmospheric plasma technologies and how these technologies can be leveraged to develop in-line continuous processing of a wide variety of substrates. Readers will gain an understanding of specific surface modification effects by atmospheric plasmas, and how to best characterize those modifications to optimize surface cleaning and functionalization for adhesion promotion. The book also features a series of chapters written to address practical surface modification effects of atmospheric plasmas within specific application markets, and a commercially-focused assessment of those effects.

Surface Treatment of Materials for Adhesive Bonding

Surface Treatment of Materials for Adhesive Bonding PDF

Author: Sina Ebnesajjad

Publisher: William Andrew

Published: 2013-10-22

Total Pages: 360

ISBN-13: 0323265049

DOWNLOAD EBOOK →

Aimed at engineers and materials scientists in a wide range of sectors, this book is a unique source of surface preparation principles and techniques for plastics, thermosets, elastomers, ceramics and metals bonding. With emphasis on the practical, it draws together the technical principles of surface science and surface treatments technologies to enable practitioners to improve existing surface preparation processes to improve adhesion and, as a result, enhance product life. This book describes and illustrates the surface preparations and operations that must be applied to a surface before acceptable adhesive bonding is achieved. It is meant to be an exhaustive overview, including more detailed explanation where necessary, in a continuous and logical progression. The book provides a necessary grounding in the science and practice of adhesion, without which adequate surface preparation is impossible. Surface characterization techniques are included, as is an up-to-date assessment of existing surface treatment technologies such as Atmospheric Plasma, Degreasing, Grit blasting, laser ablation and more. Fundamental material considerations are prioritised over specific applications, making this book relevant to all industries using adhesives, such as medical, automotive, aerospace, packaging and electronics. This second edition represents a full and detailed update, with all major developments in the field included and three chapters added to cover ceramic surface treatment, plasma treatment of non-metallic materials, and the effect of additives on surface properties of plastics. A vital resource for improving existing surface treatment processes to increase product life by creating stronger, more durable adhesive bonds Relevant across a variety of industries, including medical, automotive and packaging Provides essential grounding in the science of surface adhesion, and details how this links with the practice of surface treatment

Cold Plasma Cancer Therapy

Cold Plasma Cancer Therapy PDF

Author: Michael Keidar

Publisher: Morgan & Claypool Publishers

Published: 2019-04-01

Total Pages: 98

ISBN-13: 1643274341

DOWNLOAD EBOOK →

Cold atmospheric plasma (CAP) emerges as a possible new modality for cancer treatment. This book provides a comprehensive introduction into fundamentals of the CAP and plasma devices used in plasma medicine. An analysis of the mechanisms of plasma interaction with cancer and normal cells including description of possible mechanisms of plasma selectivity is included. Recent advances in the field, the primary challenges and future directions are presented.

Plasma Catalysis

Plasma Catalysis PDF

Author: Annemie Bogaerts

Publisher: MDPI

Published: 2019-04-02

Total Pages: 248

ISBN-13: 3038977500

DOWNLOAD EBOOK →

Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC remediation). Plasma catalysis allows thermodynamically difficult reactions to proceed at ambient pressure and temperature, due to activation of the gas molecules by energetic electrons created in the plasma. However, plasma is very reactive but not selective, and thus a catalyst is needed to improve the selectivity. In spite of the growing interest in plasma catalysis, the underlying mechanisms of the (possible) synergy between plasma and catalyst are not yet fully understood. Indeed, plasma catalysis is quite complicated, as the plasma will affect the catalyst and vice versa. Moreover, due to the reactive plasma environment, the most suitable catalysts will probably be different from thermal catalysts. More research is needed to better understand the plasma–catalyst interactions, in order to further improve the applications.