Nonlinear Waves And Inverse Scattering Transform

Nonlinear Waves And Inverse Scattering Transform PDF

Author: Spencer P Kuo

Publisher: World Scientific

Published: 2023-06-26

Total Pages: 198

ISBN-13: 1800614055

DOWNLOAD EBOOK →

Nonlinear waves are essential phenomena in scientific and engineering disciplines. The features of nonlinear waves are usually described by solutions to nonlinear partial differential equations (NLPDEs). This book was prepared to familiarize students with nonlinear waves and methods of solving NLPDEs, which will enable them to expand their studies into related areas. The selection of topics and the focus given to each provide essential materials for a lecturer teaching a nonlinear wave course.Chapter 1 introduces 'mode' types in nonlinear systems as well as Bäcklund transform, an indispensable technique to solve generic NLPDEs for stationary solutions. Chapters 2 and 3 are devoted to the derivation and solution characterization of three generic nonlinear equations: nonlinear Schrödinger equation, Korteweg-de Vries (KdV) equation, and Burgers equation. Chapter 4 is devoted to the inverse scattering transform (IST), addressing the initial value problems of a group of NLPDEs. In Chapter 5, derivations and proofs of the IST formulas are presented. Steps for applying IST to solve NLPDEs for solitary solutions are illustrated in Chapter 6.

Nonlinear Ocean Waves and the Inverse Scattering Transform

Nonlinear Ocean Waves and the Inverse Scattering Transform PDF

Author: Alfred Osborne

Publisher: Academic Press

Published: 2010-04-07

Total Pages: 977

ISBN-13: 0080925103

DOWNLOAD EBOOK →

For more than 200 years, the Fourier Transform has been one of the most important mathematical tools for understanding the dynamics of linear wave trains. Nonlinear Ocean Waves and the Inverse Scattering Transform presents the development of the nonlinear Fourier analysis of measured space and time series, which can be found in a wide variety of physical settings including surface water waves, internal waves, and equatorial Rossby waves. This revolutionary development will allow hyperfast numerical modelling of nonlinear waves, greatly advancing our understanding of oceanic surface and internal waves. Nonlinear Fourier analysis is based upon a generalization of linear Fourier analysis referred to as the inverse scattering transform, the fundamental building block of which is a generalized Fourier series called the Riemann theta function. Elucidating the art and science of implementing these functions in the context of physical and time series analysis is the goal of this book. Presents techniques and methods of the inverse scattering transform for data analysis Geared toward both the introductory and advanced reader venturing further into mathematical and numerical analysis Suitable for classroom teaching as well as research

The Legacy of the Inverse Scattering Transform in Applied Mathematics

The Legacy of the Inverse Scattering Transform in Applied Mathematics PDF

Author: J. L. Bona

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 346

ISBN-13: 0821831615

DOWNLOAD EBOOK →

Swift progress and new applications characterize the area of solitons and the inverse scattering transform. There are rapid developments in current nonlinear optical technology: Larger intensities are more available; pulse widths are smaller; relaxation times and damping rates are less significant. In keeping with these advancements, exactly integrable soliton equations, such as $3$-wave resonant interactions and second harmonic generation, are becoming more and more relevant inexperimental applications. Techniques are now being developed for using these interactions to frequency convert high intensity sources into frequency regimes where there are no lasers. Other experiments involve using these interactions to develop intense variable frequency sources, opening up even morepossibilities. This volume contains new developments and state-of-the-art research arising from the conference on the ``Legacy of the Inverse Scattering Transform'' held at Mount Holyoke College (South Hadley, MA). Unique to this volume is the opening section, ``Reviews''. This part of the book provides reviews of major research results in the inverse scattering transform (IST), on the application of IST to classical problems in differential geometry, on algebraic and analytic aspects ofsoliton-type equations, on a new method for studying boundary value problems for integrable partial differential equations (PDEs) in two dimensions, on chaos in PDEs, on advances in multi-soliton complexes, and on a unified approach to integrable systems via Painleve analysis. This conference provided aforum for general exposition and discussion of recent developments in nonlinear waves and related areas with potential applications to other fields. The book will be of interest to graduate students and researchers interested in mathematics, physics, and engineering.

Nonlinear Waves

Nonlinear Waves PDF

Author: Lokenath Debnath

Publisher: CUP Archive

Published: 1983-12-30

Total Pages: 376

ISBN-13: 9780521254687

DOWNLOAD EBOOK →

The outcome of a conference held in East Carolina University in June 1982, this book provides an account of developments in the theory and application of nonlinear waves in both fluids and plasmas. Twenty-two contributors from eight countries here cover all the main fields of research, including nonlinear water waves, K-dV equations, solitions and inverse scattering transforms, stability of solitary waves, resonant wave interactions, nonlinear evolution equations, nonlinear wave phenomena in plasmas, recurrence phenomena in nonlinear wave systems, and the structure and dynamics of envelope solitions in plasmas.

Solitons and the Inverse Scattering Transform

Solitons and the Inverse Scattering Transform PDF

Author: Mark J. Ablowitz

Publisher: SIAM

Published: 2006-05-15

Total Pages: 433

ISBN-13: 089871477X

DOWNLOAD EBOOK →

A study, by two of the major contributors to the theory, of the inverse scattering transform and its application to problems of nonlinear dispersive waves that arise in fluid dynamics, plasma physics, nonlinear optics, particle physics, crystal lattice theory, nonlinear circuit theory and other areas. A soliton is a localised pulse-like nonlinear wave that possesses remarkable stability properties. Typically, problems that admit soliton solutions are in the form of evolution equations that describe how some variable or set of variables evolve in time from a given state. The equations may take a variety of forms, for example, PDEs, differential difference equations, partial difference equations, and integrodifferential equations, as well as coupled ODEs of finite order. What is surprising is that, although these problems are nonlinear, the general solution that evolves from almost arbitrary initial data may be obtained without approximation.

Nonlinear Waves

Nonlinear Waves PDF

Author: Lokenath Debnath

Publisher: Cambridge University Press

Published: 2009-01-08

Total Pages: 372

ISBN-13: 0511868618

DOWNLOAD EBOOK →

The outcome of a conference held in East Carolina University in June 1982, this book provides an account of developments in the theory and application of nonlinear waves in both fluids and plasmas. Twenty-two contributors from eight countries here cover all the main fields of research, including nonlinear water waves, K-dV equations, solitions and inverse scattering transforms, stability of solitary waves, resonant wave interactions, nonlinear evolution equations, nonlinear wave phenomena in plasmas, recurrence phenomena in nonlinear wave systems, and the structure and dynamics of envelope solitions in plasmas.

Nonlinear Waves in Integrable and Nonintegrable Systems

Nonlinear Waves in Integrable and Nonintegrable Systems PDF

Author: Jianke Yang

Publisher: SIAM

Published: 2010-01-01

Total Pages: 453

ISBN-13: 0898719682

DOWNLOAD EBOOK →

Presents cutting-edge developments in the theory and experiments of nonlinear waves. Its comprehensive coverage of analytical and numerical methods for nonintegrable systems is the first of its kind.

Nonlinear Dispersive Partial Differential Equations and Inverse Scattering

Nonlinear Dispersive Partial Differential Equations and Inverse Scattering PDF

Author: Peter D. Miller

Publisher: Springer Nature

Published: 2019-11-14

Total Pages: 528

ISBN-13: 1493998064

DOWNLOAD EBOOK →

This volume contains lectures and invited papers from the Focus Program on "Nonlinear Dispersive Partial Differential Equations and Inverse Scattering" held at the Fields Institute from July 31-August 18, 2017. The conference brought together researchers in completely integrable systems and PDE with the goal of advancing the understanding of qualitative and long-time behavior in dispersive nonlinear equations. The program included Percy Deift’s Coxeter lectures, which appear in this volume together with tutorial lectures given during the first week of the focus program. The research papers collected here include new results on the focusing ​nonlinear Schrödinger (NLS) equation, the massive Thirring model, and the Benjamin-Bona-Mahoney equation as dispersive PDE in one space dimension, as well as the Kadomtsev-Petviashvili II equation, the Zakharov-Kuznetsov equation, and the Gross-Pitaevskii equation as dispersive PDE in two space dimensions. The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral theory of Schrodinger's equation in one space dimension. This led to the discovery of a number of completely integrable models of dispersive wave propagation, including the cubic NLS equation, and the derivative NLS equation in one space dimension and the Davey-Stewartson, Kadomtsev-Petviashvili and Novikov-Veselov equations in two space dimensions. These models have been extensively studied and, in some cases, the inverse scattering theory has been put on rigorous footing. It has been used as a powerful analytical tool to study global well-posedness and elucidate asymptotic behavior of the solutions, including dispersion, soliton resolution, and semiclassical limits.

Nonlinear Wave Equations

Nonlinear Wave Equations PDF

Author: Christopher W. Curtis

Publisher: American Mathematical Soc.

Published: 2015-03-26

Total Pages: 226

ISBN-13: 1470410508

DOWNLOAD EBOOK →

This volume contains the proceedings of the AMS Special Session on Nonlinear Waves and Integrable Systems, held on April 13-14, 2013, at the University of Colorado, Boulder, Colorado. The field of nonlinear waves is an exciting area of modern mathematical research that also plays a major role in many application areas from physics and fluids. The articles in this volume present a diverse cross section of topics from this field including work on the Inverse Scattering Transform, scattering theory, inverse problems, numerical methods for dispersive wave equations, and analytic and computational methods for free boundary problems. Significant attention to applications is also given throughout the articles with an extensive presentation on new results in the free surface problem in fluids. This volume will be useful to students and researchers interested in learning current techniques in studying nonlinear dispersive systems from both the integrable systems and computational points of view.

Direct and Inverse Sturm-Liouville Problems

Direct and Inverse Sturm-Liouville Problems PDF

Author: Vladislav V. Kravchenko

Publisher: Birkhäuser

Published: 2020-08-18

Total Pages: 154

ISBN-13: 9783030478483

DOWNLOAD EBOOK →

This book provides an introduction to the most recent developments in the theory and practice of direct and inverse Sturm-Liouville problems on finite and infinite intervals. A universal approach for practical solving of direct and inverse spectral and scattering problems is presented, based on the notion of transmutation (transformation) operators and their efficient construction. Analytical representations for solutions of Sturm-Liouville equations as well as for the integral kernels of the transmutation operators are derived in the form of functional series revealing interesting special features and lending themselves to direct and simple numerical solution of a wide variety of problems. The book is written for undergraduate and graduate students, as well as for mathematicians, physicists and engineers interested in direct and inverse spectral problems.