Nonlinear Problems in Mathematical Physics and Related Topics I

Nonlinear Problems in Mathematical Physics and Related Topics I PDF

Author: Michael Sh. Birman

Publisher: Springer Science & Business Media

Published: 2002-07-31

Total Pages: 416

ISBN-13: 9780306473333

DOWNLOAD EBOOK →

The new series, International Mathematical Series founded by Kluwer / Plenum Publishers and the Russian publisher, Tamara Rozhkovskaya is published simultaneously in English and in Russian and starts with two volumes dedicated to the famous Russian mathematician Professor Olga Aleksandrovna Ladyzhenskaya, on the occasion of her 80th birthday. O.A. Ladyzhenskaya graduated from the Moscow State University. But throughout her career she has been closely connected with St. Petersburg where she works at the V.A. Steklov Mathematical Institute of the Russian Academy of Sciences. Many generations of mathematicians have become familiar with the nonlinear theory of partial differential equations reading the books on quasilinear elliptic and parabolic equations written by O.A. Ladyzhenskaya with V.A. Solonnikov and N.N. Uraltseva. Her results and methods on the Navier-Stokes equations, and other mathematical problems in the theory of viscous fluids, nonlinear partial differential equations and systems, the regularity theory, some directions of computational analysis are well known. So it is no surprise that these two volumes attracted leading specialists in partial differential equations and mathematical physics from more than 15 countries, who present their new results in the various fields of mathematics in which the results, methods, and ideas of O.A. Ladyzhenskaya played a fundamental role. Nonlinear Problems in Mathematical Physics and Related Topics I presents new results from distinguished specialists in the theory of partial differential equations and analysis. A large part of the material is devoted to the Navier-Stokes equations, which play an important role in the theory of viscous fluids. In particular, the existence of a local strong solution (in the sense of Ladyzhenskaya) to the problem describing some special motion in a Navier-Stokes fluid is established. Ladyzhenskaya's results on axially symmetric solutions to the Navier-Stokes fluid are generalized and solutions with fast decay of nonstationary Navier-Stokes equations in the half-space are stated. Application of the Fourier-analysis to the study of the Stokes wave problem and some interesting properties of the Stokes problem are presented. The nonstationary Stokes problem is also investigated in nonconvex domains and some Lp-estimates for the first-order derivatives of solutions are obtained. New results in the theory of fully nonlinear equations are presented. Some asymptotics are derived for elliptic operators with strongly degenerated symbols. New results are also presented for variational problems connected with phase transitions of means in controllable dynamical systems, nonlocal problems for quasilinear parabolic equations, elliptic variational problems with nonstandard growth, and some sufficient conditions for the regularity of lateral boundary. Additionally, new results are presented on area formulas, estimates for eigenvalues in the case of the weighted Laplacian on Metric graph, application of the direct Lyapunov method in continuum mechanics, singular perturbation property of capillary surfaces, partially free boundary problem for parametric double integrals.

Nonlinear Problems in Mathematical Physics and Related Topics

Nonlinear Problems in Mathematical Physics and Related Topics PDF

Author: Michael Sh. Birman

Publisher: Springer Science & Business Media

Published: 2002

Total Pages: 420

ISBN-13: 9780306474224

DOWNLOAD EBOOK →

The main topics in this volume reflect the fields of mathematics in which Professor O.A. Ladyzhenskaya obtained her most influential results. One of the main topics considered is the set of Navier-Stokes equations and their solutions.

Nonlinear Problems in Mathematical Physics and Related Topics II

Nonlinear Problems in Mathematical Physics and Related Topics II PDF

Author: Michael Sh. Birman

Publisher: Springer

Published: 2014-01-14

Total Pages: 0

ISBN-13: 9781461507017

DOWNLOAD EBOOK →

The main topics reflect the fields of mathematics in which Professor O.A. Ladyzhenskaya obtained her most influential results. One of the main topics considered in the volume is the Navier-Stokes equations. This subject is investigated in many different directions. In particular, the existence and uniqueness results are obtained for the Navier-Stokes equations in spaces of low regularity. A sufficient condition for the regularity of solutions to the evolution Navier-Stokes equations in the three-dimensional case is derived and the stabilization of a solution to the Navier-Stokes equations to the steady-state solution and the realization of stabilization by a feedback boundary control are discussed in detail. Connections between the regularity problem for the Navier-Stokes equations and a backward uniqueness problem for the heat operator are also clarified. Generalizations and modified Navier-Stokes equations modeling various physical phenomena such as the mixture of fluids and isotropic turbulence are also considered. Numerical results for the Navier-Stokes equations, as well as for the porous medium equation and the heat equation, obtained by the diffusion velocity method are illustrated by computer graphs. Some other models describing various processes in continuum mechanics are studied from the mathematical point of view. In particular, a structure theorem for divergence-free vector fields in the plane for a problem arising in a micromagnetics model is proved. The absolute continuity of the spectrum of the elasticity operator appearing in a problem for an isotropic periodic elastic medium with constant shear modulus (the Hill body) is established. Time-discretization problems for generalized Newtonian fluids are discussed, the unique solvability of the initial-value problem for the inelastic homogeneous Boltzmann equation for hard spheres, with a diffusive term representing a random background acceleration is proved and some qualitative properties of the solution are studied. An approach to mathematical statements based on the Maxwell model and illustrated by the Lavrent'ev problem on the wave formation caused by explosion welding is presented. The global existence and uniqueness of a solution to the initial boundary-value problem for the equations arising in the modelling of the tension-driven Marangoni convection and the existence of a minimal global attractor are established. The existence results, regularity properties, and pointwise estimates for solutions to the Cauchy problem for linear and nonlinear Kolmogorov-type operators arising in diffusion theory, probability, and finance, are proved. The existence of minimizers for the energy functional in the Skyrme model for the low-energy interaction of pions which describes elementary particles as spatially localized solutions of nonlinear partial differential equations is also proved. Several papers are devoted to the study of nonlinear elliptic and parabolic operators. Versions of the mean value theorems and Harnack inequalities are studied for the heat equation, and connections with the so-called growth theorems for more general second-order elliptic and parabolic equations in the divergence or nondivergence form are investigated. Additionally, qualitative properties of viscosity solutions of fully nonlinear partial differential inequalities of elliptic and degenerate elliptic type are clarified. Some uniqueness results for identification of quasilinear elliptic and parabolic equations are presented and the existence of smooth solutions of a class of Hessian equations on a compact Riemannian manifold without imposing any curvature restrictions on the manifold is established.

Nonlinear Problems in Mathematical Physics and Related Topics I

Nonlinear Problems in Mathematical Physics and Related Topics I PDF

Author: Michael Sh. Birman

Publisher: Springer

Published: 2012-10-06

Total Pages: 386

ISBN-13: 9781461352341

DOWNLOAD EBOOK →

The new series, International Mathematical Series founded by Kluwer / Plenum Publishers and the Russian publisher, Tamara Rozhkovskaya is published simultaneously in English and in Russian and starts with two volumes dedicated to the famous Russian mathematician Professor Olga Aleksandrovna Ladyzhenskaya, on the occasion of her 80th birthday. O.A. Ladyzhenskaya graduated from the Moscow State University. But throughout her career she has been closely connected with St. Petersburg where she works at the V.A. Steklov Mathematical Institute of the Russian Academy of Sciences. Many generations of mathematicians have become familiar with the nonlinear theory of partial differential equations reading the books on quasilinear elliptic and parabolic equations written by O.A. Ladyzhenskaya with V.A. Solonnikov and N.N. Uraltseva. Her results and methods on the Navier-Stokes equations, and other mathematical problems in the theory of viscous fluids, nonlinear partial differential equations and systems, the regularity theory, some directions of computational analysis are well known. So it is no surprise that these two volumes attracted leading specialists in partial differential equations and mathematical physics from more than 15 countries, who present their new results in the various fields of mathematics in which the results, methods, and ideas of O.A. Ladyzhenskaya played a fundamental role. Nonlinear Problems in Mathematical Physics and Related Topics I presents new results from distinguished specialists in the theory of partial differential equations and analysis. A large part of the material is devoted to the Navier-Stokes equations, which play an important role in the theory of viscous fluids. In particular, the existence of a local strong solution (in the sense of Ladyzhenskaya) to the problem describing some special motion in a Navier-Stokes fluid is established. Ladyzhenskaya's results on axially symmetric solutions to the Navier-Stokes fluid are generalized and solutions with fast decay of nonstationary Navier-Stokes equations in the half-space are stated. Application of the Fourier-analysis to the study of the Stokes wave problem and some interesting properties of the Stokes problem are presented. The nonstationary Stokes problem is also investigated in nonconvex domains and some Lp-estimates for the first-order derivatives of solutions are obtained. New results in the theory of fully nonlinear equations are presented. Some asymptotics are derived for elliptic operators with strongly degenerated symbols. New results are also presented for variational problems connected with phase transitions of means in controllable dynamical systems, nonlocal problems for quasilinear parabolic equations, elliptic variational problems with nonstandard growth, and some sufficient conditions for the regularity of lateral boundary. Additionally, new results are presented on area formulas, estimates for eigenvalues in the case of the weighted Laplacian on Metric graph, application of the direct Lyapunov method in continuum mechanics, singular perturbation property of capillary surfaces, partially free boundary problem for parametric double integrals.

Blow-Up in Nonlinear Equations of Mathematical Physics

Blow-Up in Nonlinear Equations of Mathematical Physics PDF

Author: Maxim Olegovich Korpusov

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2018-08-06

Total Pages: 344

ISBN-13: 3110599007

DOWNLOAD EBOOK →

The present book carefully studies the blow-up phenomenon of solutions to partial differential equations, including many equations of mathematical physics. The included material is based on lectures read by the authors at the Lomonosov Moscow State University, and the book is addressed to a wide range of researchers and graduate students working in nonlinear partial differential equations, nonlinear functional analysis, and mathematical physics. Contents Nonlinear capacity method of S. I. Pokhozhaev Method of self-similar solutions of V. A. Galaktionov Method of test functions in combination with method of nonlinear capacity Energy method of H. A. Levine Energy method of G. Todorova Energy method of S. I. Pokhozhaev Energy method of V. K. Kalantarov and O. A. Ladyzhenskaya Energy method of M. O. Korpusov and A. G. Sveshnikov Nonlinear Schrödinger equation Variational method of L. E. Payne and D. H. Sattinger Breaking of solutions of wave equations Auxiliary and additional results

Mathematical Topics In Nonlinear Kinetic Theory Ii

Mathematical Topics In Nonlinear Kinetic Theory Ii PDF

Author: Nicola Bellomo

Publisher: World Scientific Publishing Company

Published: 1991-04-30

Total Pages: 226

ISBN-13: 9813103620

DOWNLOAD EBOOK →

This book deals with the relevant mathematical aspects related to the kinetic equations for moderately dense gases with particular attention to the Enskog equation.

Nonlinear Equations in Physics and Mathematics

Nonlinear Equations in Physics and Mathematics PDF

Author: P. Barut

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 470

ISBN-13: 9400998910

DOWNLOAD EBOOK →

This is the third Volume in a series of books devoted to the interdisciplinary area between mathematics and physics, all ema nating from the Advanced Study Institutes held in Istanbul in 1970, 1972 and 1977. We believe that physics and mathematics can develop best in harmony and in close communication and cooper ation with each other and are sometimes inseparable. With this goal in mind we tried to bring mathematicians and physicists together to talk and lecture to each other-this time in the area of nonlinear equations. The recent progress and surge of interest in nonlinear ordi nary and partial differential equations has been impressive. At the same time, novel and interesting physical applications mul tiply. There is a unifying element brought about by the same characteristic nonlinear behavior occurring in very widely differ ent physical situations, as in the case of "solitons," for exam ple. This Volume gives, we believe, a very good indication over all of this recent progress both in theory and applications, and over current research activity and problems. The 1977 Advanced Study Institute was sponsored by the NATO Scientific Affairs Division, The University of the Bosphorus and the Turkish Scientific and Technical Research Council. We are deeply grateful to these Institutions for their support, and to lecturers and participants for their hard work and enthusiasm which created an atmosphere of lively scientific discussions.

Nonlinear Equations in Physics and Mathematics

Nonlinear Equations in Physics and Mathematics PDF

Author: P. Barut

Publisher: Springer

Published: 1978-11-30

Total Pages: 488

ISBN-13: 902770936X

DOWNLOAD EBOOK →

This is the third Volume in a series of books devoted to the interdisciplinary area between mathematics and physics, all ema nating from the Advanced Study Institutes held in Istanbul in 1970, 1972 and 1977. We believe that physics and mathematics can develop best in harmony and in close communication and cooper ation with each other and are sometimes inseparable. With this goal in mind we tried to bring mathematicians and physicists together to talk and lecture to each other-this time in the area of nonlinear equations. The recent progress and surge of interest in nonlinear ordi nary and partial differential equations has been impressive. At the same time, novel and interesting physical applications mul tiply. There is a unifying element brought about by the same characteristic nonlinear behavior occurring in very widely differ ent physical situations, as in the case of "solitons," for exam ple. This Volume gives, we believe, a very good indication over all of this recent progress both in theory and applications, and over current research activity and problems. The 1977 Advanced Study Institute was sponsored by the NATO Scientific Affairs Division, The University of the Bosphorus and the Turkish Scientific and Technical Research Council. We are deeply grateful to these Institutions for their support, and to lecturers and participants for their hard work and enthusiasm which created an atmosphere of lively scientific discussions.

Blow-Up in Nonlinear Equations

Blow-Up in Nonlinear Equations PDF

Author: Maxim Olegovich Korpusov

Publisher: Walter de Gruyter

Published: 2014-10-15

Total Pages: 500

ISBN-13: 9783110313048

DOWNLOAD EBOOK →

This book is about the phenomenon ofthe emergence of blow-up effectsin nonlinear equations.In particular it deals with theirapplicationsin modern mathematical physics.The bookmay also serve as a manual for researchers who want toget an overview ofthe main methods in nonlinear analysis.