Nonlinear Dynamics in Physiology and Medicine

Nonlinear Dynamics in Physiology and Medicine PDF

Author: Anne Beuter

Publisher: Springer Science & Business Media

Published: 2013-06-05

Total Pages: 452

ISBN-13: 0387216405

DOWNLOAD EBOOK →

Introduces concepts from nonlinear dynamics using an almost exclusively biological setting for motivation, and includes examples of how these concepts are used in experimental investigations of biological and physiological systems. One novel feature of the book is the inclusion of classroom-tested computer exercises. This book will appeal to students and researchers working in the natural and physical sciences wanting to learn about physiological systems from a mathematical perspective.

Nonlinear Dynamics in Physiology

Nonlinear Dynamics in Physiology PDF

Author: Mark Shelhamer

Publisher: World Scientific

Published: 2007

Total Pages: 367

ISBN-13: 9812700293

DOWNLOAD EBOOK →

This book provides a compilation of mathematical-computational tools that are used to analyze experimental data. The techniques presented are those that have been most widely and successfully applied to the analysis of physiological systems, and address issues such as randomness, determinism, dimension, and nonlinearity. In addition to bringing together the most useful methods, sufficient mathematical background is provided to enable non-specialists to understand and apply the computational techniques. Thus, the material will be useful to life-science investigators on several levels, from physiologists to bioengineer.Initial chapters present background material on dynamic systems, statistics, and linear system analysis. Each computational technique is demonstrated with examples drawn from physiology, and several chapters present case studies from oculomotor control, neuroscience, cardiology, psychology, and epidemiology. Throughout the text, historical notes give a sense of the development of the field and provide a perspective on how the techniques were developed and where they might lead. The overall approach is based largely on the analysis of trajectories in the state space, with emphasis on time-delay reconstruction of state-space trajectories. The goal of the book is to enable readers to apply these methods to their own research.

Fractal Physiology and Chaos in Medicine

Fractal Physiology and Chaos in Medicine PDF

Author: Bruce J. West

Publisher: World Scientific

Published: 2012

Total Pages: 345

ISBN-13: 9814417793

DOWNLOAD EBOOK →

This exceptional book is concerned with the application of fractals and chaos, as well as other concepts from nonlinear dynamics to biomedical phenomena. Herein we seek to communicate the excitement being experienced by scientists upon making application of these concepts within the life sciences. Mathematical concepts are introduced using biomedical data sets and the phenomena being explained take precedence over the mathematics. In this new edition what has withstood the test of time has been updated and modernized; speculations that were not borne out have been expunged and the breakthroughs that have occurred in the intervening years are emphasized. The book provides a comprehensive overview of a nascent theory of medicine, including a new chapter on the theory of complex networks as they pertain to medicine.

Nonlinear Dynamic Modeling of Physiological Systems

Nonlinear Dynamic Modeling of Physiological Systems PDF

Author: Professor Vasilis Z. Marmarelis

Publisher: John Wiley & Sons

Published: 2004-09-03

Total Pages: 564

ISBN-13: 9780471469605

DOWNLOAD EBOOK →

The study of nonlinearities in physiology has been hindered by the lack of effective ways to obtain nonlinear dynamic models from stimulus-response data in a practical context. A considerable body of knowledge has accumulated over the last thirty years in this area of research. This book summarizes that progress, and details the most recent methodologies that offer practical solutions to this daunting problem. Implementation and application are discussed, and examples are provided using both synthetic and actual experimental data. This essential study of nonlinearities in physiology apprises researchers and students of the latest findings and techniques in the field.

Fractal Physiology and Chaos in Medicine

Fractal Physiology and Chaos in Medicine PDF

Author: Bruce J. West

Publisher: World Scientific

Published: 2012

Total Pages: 345

ISBN-13: 9814417807

DOWNLOAD EBOOK →

This exceptional book is concerned with the application of fractals and chaos, as well as other concepts from nonlinear dynamics to biomedical phenomena. Herein we seek to communicate the excitement being experienced by scientists upon making application of these concepts within the life sciences. Mathematical concepts are introduced using biomedical data sets and the phenomena being explained take precedence over the mathematics.In this new edition what has withstood the test of time has been updated and modernized; speculations that were not borne out have been expunged and the breakthroughs that have occurred in the intervening years are emphasized. The book provides a comprehensive overview of a nascent theory of medicine, including a new chapter on the theory of complex networks as they pertain to medicine.

Understanding Nonlinear Dynamics

Understanding Nonlinear Dynamics PDF

Author: Daniel Kaplan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 438

ISBN-13: 1461208238

DOWNLOAD EBOOK →

Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics ( TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. About the Authors Daniel Kaplan specializes in the analysis of data using techniques motivated by nonlinear dynamics. His primary interest is in the interpretation of irregular physiological rhythms, but the methods he has developed have been used in geo physics, economics, marine ecology, and other fields. He joined McGill in 1991, after receiving his Ph.D from Harvard University and working at MIT. His un dergraduate studies were completed at Swarthmore College. He has worked with several instrumentation companies to develop novel types of medical monitors.

Identification of Nonlinear Physiological Systems

Identification of Nonlinear Physiological Systems PDF

Author: David T. Westwick

Publisher: John Wiley & Sons

Published: 2003-08-28

Total Pages: 284

ISBN-13: 9780471274568

DOWNLOAD EBOOK →

Significant advances have been made in the field since the previous classic texts were written. This text brings the available knowledge up to date. * Enables the reader to use a wide variety of nonlinear system identification techniques. * Offers a thorough treatment of the underlying theory. * Provides a MATLAB toolbox containing implementation of the latest identification methods together with an extensive set of problems using realistic data sets.

Self-Organized Biological Dynamics and Nonlinear Control

Self-Organized Biological Dynamics and Nonlinear Control PDF

Author: Jan Walleczek

Publisher: Cambridge University Press

Published: 2006-04-20

Total Pages: 444

ISBN-13: 1139427598

DOWNLOAD EBOOK →

The growing impact of nonlinear science on biology and medicine is fundamentally changing our view of living organisms and disease processes. This book introduces the application to biomedicine of a broad range of interdisciplinary concepts from nonlinear dynamics, such as self-organization, complexity, coherence, stochastic resonance, fractals and chaos. It comprises 18 chapters written by leading figures in the field and covers experimental and theoretical research, as well as the emerging technological possibilities such as nonlinear control techniques for treating pathological biodynamics, including heart arrhythmias and epilepsy. This book will attract the interest of professionals and students from a wide range of disciplines, including physicists, chemists, biologists, sensory physiologists and medical researchers such as cardiologists, neurologists and biomedical engineers.

Complex Dynamics in Physiological Systems: From Heart to Brain

Complex Dynamics in Physiological Systems: From Heart to Brain PDF

Author: Syamal K. Dana

Publisher: Springer Science & Business Media

Published: 2008-11-06

Total Pages: 272

ISBN-13: 1402091435

DOWNLOAD EBOOK →

Nonlinear dynamics has become an important field of research in recent years in many areas of the natural sciences. In particular, it has potential applications in biology and medicine; nonlinear data analysis has helped to detect the progress of cardiac disease, physiological disorders, for example episodes of epilepsy, and others. This book focuses on the current trends of research concerning the prediction of sudden cardiac death and the onset of epileptic seizures, using the nonlinear analysis based on ECG and EEG data. Topics covered include the analysis of cardiac models and neural models. The book is a collection of recent research papers by leading physicists, mathematicians, cardiologists and neurobiologists who are actively involved in using the concepts of nonlinear dynamics to explore the functional behaviours of heart and brain under normal and pathological conditions. This collection is intended for students in physics, mathematics and medical sciences, and researchers in interdisciplinary areas of physics and biology.