Nonlinear Control Systems and Power System Dynamics

Nonlinear Control Systems and Power System Dynamics PDF

Author: Qiang Lu

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 398

ISBN-13: 1475733127

DOWNLOAD EBOOK →

Nonlinear Control Systems and Power System Dynamics presents a comprehensive description of nonlinear control of electric power systems using nonlinear control theory, which is developed by the differential geometric approach and nonlinear robust control method. This book explains in detail the concepts, theorems and algorithms in nonlinear control theory, illustrated by step-by-step examples. In addition, all the mathematical formulation involved in deriving the nonlinear control laws of power systems are sufficiently presented. Considerations and cautions involved in applying nonlinear control theory to practical engineering control designs are discussed and special attention is given to the implementation of nonlinear control laws using microprocessors. Nonlinear Control Systems and Power System Dynamics serves as a text for advanced level courses and is an excellent reference for engineers and researchers who are interested in the application of modern nonlinear control theory to practical engineering control designs.

Power System Dynamics and Control

Power System Dynamics and Control PDF

Author: Harry G. Kwatny

Publisher: Birkhäuser

Published: 2016-06-02

Total Pages: 271

ISBN-13: 0817646744

DOWNLOAD EBOOK →

Whereas power systems have traditionally been designed with a focus on protecting them from routine component failures and atypical user demand, we now also confront the fact that deliberate attack intended to cause maximum disruption is a real possibility. In response to this changing environment, new concepts and tools have emerged that address many of the issues facing power system operation today. This book is aimed at introducing these ideas to practicing power systems engineers, control systems engineers interested in power systems, and graduate students in these areas. The ideas are examined with an emphasis on how they can be applied to improve our understanding of power system behavior and help design better control systems. The book is supplemented by a Mathematica package enabling readers to work out nontrivial examples and problems. Also included is a set of Mathematica tutorial notebooks providing detailed solutions of the worked examples in the text. In addition to Mathematica, simulations are carried out using Simulink with Stateflow.

Nonlinear Control Systems

Nonlinear Control Systems PDF

Author: Alberto Isidori

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 557

ISBN-13: 1846286158

DOWNLOAD EBOOK →

The purpose of this book is to present a self-contained description of the fun damentals of the theory of nonlinear control systems, with special emphasis on the differential geometric approach. The book is intended as a graduate text as weil as a reference to scientists and engineers involved in the analysis and design of feedback systems. The first version of this book was written in 1983, while I was teach ing at the Department of Systems Science and Mathematics at Washington University in St. Louis. This new edition integrates my subsequent teaching experience gained at the University of Illinois in Urbana-Champaign in 1987, at the Carl-Cranz Gesellschaft in Oberpfaffenhofen in 1987, at the University of California in Berkeley in 1988. In addition to a major rearrangement of the last two Chapters of the first version, this new edition incorporates two additional Chapters at a more elementary level and an exposition of some relevant research findings which have occurred since 1985.

Nonlinear Control Synthesis for Electrical Power Systems Using Controllable Series Capacitors

Nonlinear Control Synthesis for Electrical Power Systems Using Controllable Series Capacitors PDF

Author: N S Manjarekar

Publisher: Springer Science & Business Media

Published: 2012-02-10

Total Pages: 96

ISBN-13: 3642275311

DOWNLOAD EBOOK →

In this work we derive asymptotically stabilizing control laws for electrical power systems using two nonlinear control synthesis techniques. For this transient stabilization problem the actuator considered is a power electronic device, a controllable series capacitor (CSC). The power system is described using two different nonlinear models - the second order swing equation and the third order flux-decay model. To start with, the CSC is modeled by the injection model which is based on the assumption that the CSC dynamics is very fast as compared to the dynamics of the power system and hence can be approximated by an algebraic equation. Here, by neglecting the CSC dynamics, the input vector $g(x)$ in the open loop system takes a complex form - the injection model. Using this model, interconnection and damping assignment passivity-based control (IDA-PBC) methodology is demonstrated on two power systems: a single machine infinite bus (SMIB) system and a two machine system. Further, IDA-PBC is used to derive stabilizing controllers for power systems, where the CSC dynamics are included as a first order system. Next, we consider a different control methodology, immersion and invariance (I\&I), to synthesize an asymptotically stabilizing control law for the SMIB system with a CSC. The CSC is described by a first order system. As a generalization of I\&I, we incorporate the power balance algebraic constraints in the load bus to the SMIB swing equation, and extend the design philosophy to a class of differential algebraic systems. The proposed result is then demonstrated on another example: a two-machine system with two load buses and a CSC. The controller performances are validated through simulations for all cases.

Nonlinear Control Systems II

Nonlinear Control Systems II PDF

Author: Alberto Isidori

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 300

ISBN-13: 1447105494

DOWNLOAD EBOOK →

This eagerly awaited follow-up to Nonlinear Control Systems incorporates recent advances in the design of feedback laws, for the purpose of globally stabilizing nonlinear systems via state or output feedback. The author is one of the most prominent researchers in the field.

Dynamic Estimation and Control of Power Systems

Dynamic Estimation and Control of Power Systems PDF

Author: Abhinav Kumar Singh

Publisher: Academic Press

Published: 2018-10-04

Total Pages: 262

ISBN-13: 0128140062

DOWNLOAD EBOOK →

Dynamic estimation and control is a fast growing and widely researched field of study that lays the foundation for a new generation of technologies that can dynamically, adaptively and automatically stabilize power systems. This book provides a comprehensive introduction to research techniques for real-time estimation and control of power systems. Dynamic Estimation and Control of Power Systems coherently and concisely explains key concepts in a step by step manner, beginning with the fundamentals and building up to the latest developments of the field. Each chapter features examples to illustrate the main ideas, and effective research tools are presented for signal processing-based estimation of the dynamic states and subsequent control, both centralized and decentralized, as well as linear and nonlinear. Detailed mathematical proofs are included for readers who desire a deeper technical understanding of the methods. This book is an ideal research reference for engineers and researchers working on monitoring and stability of modern grids, as well as postgraduate students studying these topics. It serves to deliver a clear understanding of the tools needed for estimation and control, while also acting as a basis for readers to further develop new and improved approaches in their own research. Offers the first concise, single resource on dynamic estimation and control of power systems Provides both an understanding of estimation and control concepts and a comparison of results Includes detailed case-studies, including MATLAB codes, to explain and demonstrate the concepts presented

Nonlinear Control Systems

Nonlinear Control Systems PDF

Author: Alberto Isidori

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 487

ISBN-13: 3662025817

DOWNLOAD EBOOK →

The purpose of this book is to present a self-contained description of the fundamentals of the theory of nonlinear control systems, with special emphasis on the differential geometric approach. The book is intended as a graduate text as well as a reference to scientists and engineers involved in the analysis and design of feedback systems. The first version of this book was written in 1983, while I was teaching at the Department of Systems Science and Mathematics at Washington University in St. Louis. This new edition integrates my subsequent teaching experience gained at the University of Illinois in Urbana-Champaign in 1987, at the Carl Cranz Gesellschaft in Oberpfaffenhofen in 1987, at the University of California in Berkeley in 1988. In addition to a major rearrangement of the last two Chapters of the first version, this new edition incorporates two additional Chapters at a more elementary level and an exposition of some relevant research findings which have occurred since 1985. In the past few years differential geometry has proved to be an effective means of analysis and design of nonlinear control systems as it was in the past for the Laplace transform, complex variable theory and linear algebra in relation to linear systems. Synthesis problems of longstanding interest like disturbance decoupling, noninteracting control, output regulation, and the shaping of the input-output response, can be dealt with relative ease, on the basis of mathematical concepts that can be easily acquired by a control scientist.

Nonlinear Systems

Nonlinear Systems PDF

Author: Shankar Sastry

Publisher: Springer Science & Business Media

Published: 2013-04-18

Total Pages: 690

ISBN-13: 1475731086

DOWNLOAD EBOOK →

There has been much excitement over the emergence of new mathematical techniques for the analysis and control of nonlinear systems. In addition, great technological advances have bolstered the impact of analytic advances and produced many new problems and applications which are nonlinear in an essential way. This book lays out in a concise mathematical framework the tools and methods of analysis which underlie this diversity of applications.

Analysis, Control and Optimal Operations in Hybrid Power Systems

Analysis, Control and Optimal Operations in Hybrid Power Systems PDF

Author: Nicu Bizon

Publisher: Springer Science & Business Media

Published: 2013-11-26

Total Pages: 305

ISBN-13: 1447155386

DOWNLOAD EBOOK →

The book’s text focuses on explaining and analyzing the dynamic performance of linear and nonlinear systems, in particular for Power Systems (PS) including Hybrid Power Sources (HPS). The system stability is important for both PS operation and planning. Placing emphasis on understanding the underlying stability principles, the book opens with an exploration of basic concepts using mathematical models and case studies from linear and nonlinear system, and continues with complex models and algorithms from field of PS. The book’s features include: (1) progressive approach from simplicity to complexity, (2) deeper look into advanced aspects of stability theory, (3) detailed description of system stability using state space energy conservation principle, (4) review of some research in the field of PS stability analysis, (5) advanced models and algorithms for Transmission Network Expansion Planning (TNEP), (6) Stability enhancement including the use of Power System Stabilizer (PSS) and Flexible Alternative Current Transmission Systems (FACTS), and (7) examination of the influence of nonlinear control on fuel cell HPS dynamics. The book will be easy to read and understand and will be an essential resource for both undergraduate and graduate students in electrical engineering as well as to the PhDs and engineers from this field. It is also a clear and comprehensive reference text for undergraduate students, postgraduate and research students studying power systems, and also for practicing engineers and researchers who are working in electricity companies or in the development of power system technologies. All will appreciate the authors' accessible approach in introduction the power system dynamics and stability from both a mathematical and engineering viewpoint.

Nonlinear Control of Dynamic Networks

Nonlinear Control of Dynamic Networks PDF

Author: Tengfei Liu

Publisher: CRC Press

Published: 2014-04-07

Total Pages: 347

ISBN-13: 1466584599

DOWNLOAD EBOOK →

Significant progress has been made on nonlinear control systems in the past two decades. However, many of the existing nonlinear control methods cannot be readily used to cope with communication and networking issues without nontrivial modifications. For example, small quantization errors may cause the performance of a "well-designed" nonlinear control system to deteriorate. Motivated by the need for new tools to solve complex problems resulting from smart power grids, biological processes, distributed computing networks, transportation networks, robotic systems, and other cutting-edge control applications, Nonlinear Control of Dynamic Networks tackles newly arising theoretical and real-world challenges for stability analysis and control design, including nonlinearity, dimensionality, uncertainty, and information constraints as well as behaviors stemming from quantization, data-sampling, and impulses. Delivering a systematic review of the nonlinear small-gain theorems, the text: Supplies novel cyclic-small-gain theorems for large-scale nonlinear dynamic networks Offers a cyclic-small-gain framework for nonlinear control with static or dynamic quantization Contains a combination of cyclic-small-gain and set-valued map designs for robust control of nonlinear uncertain systems subject to sensor noise Presents a cyclic-small-gain result in directed graphs and distributed control of nonlinear multi-agent systems with fixed or dynamically changing topology Based on the authors’ recent research, Nonlinear Control of Dynamic Networks provides a unified framework for robust, quantized, and distributed control under information constraints. Suggesting avenues for further exploration, the book encourages readers to take into consideration more communication and networking issues in control designs to better handle the arising challenges.