Intelligence-Based Cardiology and Cardiac Surgery

Intelligence-Based Cardiology and Cardiac Surgery PDF

Author: Alfonso Limon

Publisher: Elsevier

Published: 2023-09-19

Total Pages: 542

ISBN-13: 032390629X

DOWNLOAD EBOOK →

Intelligence-Based Cardiology and Cardiac Surgery: Artificial Intelligence and Human Cognition in Cardiovascular Medicine provides a comprehensive survey of artificial intelligence concepts and methodologies with real-life applications in cardiovascular medicine. Authored by a senior physician-data scientist, the book presents an intellectual and academic interface between the medical and data science domains. The book's content consists of basic concepts of artificial intelligence and human cognition applications in cardiology and cardiac surgery. This portfolio ranges from big data, machine and deep learning, cognitive computing and natural language processing in cardiac disease states such as heart failure, hypertension and pediatric heart care. The book narrows the knowledge and expertise chasm between the data scientists, cardiologists and cardiac surgeons, inspiring clinicians to embrace artificial intelligence methodologies, educate data scientists about the medical ecosystem, and create a transformational paradigm for healthcare and medicine. Covers a wide range of relevant topics from real-world data, large language models, and supervised machine learning to deep reinforcement and federated learning Presents artificial intelligence concepts and their applications in many areas in an easy-to-understand format accessible to clinicians and data scientists Discusses using artificial intelligence and related technologies with cardiology and cardiac surgery in a myriad of venues and situations Delineates the necessary elements for successfully implementing artificial intelligence in cardiovascular medicine for improved patient outcomes Presents the regulatory, ethical, legal, and financial issues embedded in artificial intelligence applications in cardiology

Complexity and Nonlinearity in Cardiovascular Signals

Complexity and Nonlinearity in Cardiovascular Signals PDF

Author: Riccardo Barbieri

Publisher: Springer

Published: 2017-08-09

Total Pages: 537

ISBN-13: 3319587099

DOWNLOAD EBOOK →

This book reports on the latest advances in complex and nonlinear cardiovascular physiology aimed at obtaining reliable, effective markers for the assessment of heartbeat, respiratory, and blood pressure dynamics. The chapters describe in detail methods that have been previously defined in theoretical physics such as entropy, multifractal spectra, and Lyapunov exponents, contextualized within physiological dynamics of cardiovascular control, including autonomic nervous system activity. Additionally, the book discusses several application scenarios of these methods. The text critically reviews the current state-of-the-art research in the field that has led to the description of dedicated experimental protocols and ad-hoc models of complex physiology. This text is ideal for biomedical engineers, physiologists, and neuroscientists. This book also: Expertly reviews cutting-edge research, such as recent advances in measuring complexity, nonlinearity, and information-theoretic concepts applied to coupled dynamical systems Comprehensively describes applications of analytic technique to clinical scenarios such as heart failure, depression and mental disorders, atrial fibrillation, acute brain lesions, and more Broadens readers' understanding of cardiovascular signals, heart rate complexity, heart rate variability, and nonlinear analysis

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging PDF

Author: Nilanjan Dey

Publisher: Academic Press

Published: 2018-11-30

Total Pages: 345

ISBN-13: 012816087X

DOWNLOAD EBOOK →

Machine Learning in Bio-Signal Analysis and Diagnostic Imaging presents original research on the advanced analysis and classification techniques of biomedical signals and images that cover both supervised and unsupervised machine learning models, standards, algorithms, and their applications, along with the difficulties and challenges faced by healthcare professionals in analyzing biomedical signals and diagnostic images. These intelligent recommender systems are designed based on machine learning, soft computing, computer vision, artificial intelligence and data mining techniques. Classification and clustering techniques, such as PCA, SVM, techniques, Naive Bayes, Neural Network, Decision trees, and Association Rule Mining are among the approaches presented. The design of high accuracy decision support systems assists and eases the job of healthcare practitioners and suits a variety of applications. Integrating Machine Learning (ML) technology with human visual psychometrics helps to meet the demands of radiologists in improving the efficiency and quality of diagnosis in dealing with unique and complex diseases in real time by reducing human errors and allowing fast and rigorous analysis. The book's target audience includes professors and students in biomedical engineering and medical schools, researchers and engineers. Examines a variety of machine learning techniques applied to bio-signal analysis and diagnostic imaging Discusses various methods of using intelligent systems based on machine learning, soft computing, computer vision, artificial intelligence and data mining Covers the most recent research on machine learning in imaging analysis and includes applications to a number of domains

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques PDF

Author: Abdulhamit Subasi

Publisher: Academic Press

Published: 2019-03-16

Total Pages: 456

ISBN-13: 0128176733

DOWNLOAD EBOOK →

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach presents how machine learning and biomedical signal processing methods can be used in biomedical signal analysis. Different machine learning applications in biomedical signal analysis, including those for electrocardiogram, electroencephalogram and electromyogram are described in a practical and comprehensive way, helping readers with limited knowledge. Sections cover biomedical signals and machine learning techniques, biomedical signals, such as electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG), different signal-processing techniques, signal de-noising, feature extraction and dimension reduction techniques, such as PCA, ICA, KPCA, MSPCA, entropy measures, and other statistical measures, and more. This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need a cogent resource on the most recent and promising machine learning techniques for biomedical signals analysis. Provides comprehensive knowledge in the application of machine learning tools in biomedical signal analysis for medical diagnostics, brain computer interface and man/machine interaction Explains how to apply machine learning techniques to EEG, ECG and EMG signals Gives basic knowledge on predictive modeling in biomedical time series and advanced knowledge in machine learning for biomedical time series

Interpretable Machine Learning

Interpretable Machine Learning PDF

Author: Christoph Molnar

Publisher: Lulu.com

Published: 2020

Total Pages: 320

ISBN-13: 0244768528

DOWNLOAD EBOOK →

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Nonlinear Systems

Nonlinear Systems PDF

Author:

Publisher: BoD – Books on Demand

Published: 2020-05-13

Total Pages: 288

ISBN-13: 1789854717

DOWNLOAD EBOOK →

The editors of this book have incorporated contributions from a diverse group of leading researchers in the field of nonlinear systems. To enrich the scope of the content, this book contains a valuable selection of works on fractional differential equations.The book aims to provide an overview of the current knowledge on nonlinear systems and some aspects of fractional calculus. The main subject areas are divided into two theoretical and applied sections. Nonlinear systems are useful for researchers in mathematics, applied mathematics, and physics, as well as graduate students who are studying these systems with reference to their theory and application. This book is also an ideal complement to the specific literature on engineering, biology, health science, and other applied science areas. The opportunity given by IntechOpen to offer this book under the open access system contributes to disseminating the field of nonlinear systems to a wide range of researchers.

Machine Learning in Cardiovascular Medicine

Machine Learning in Cardiovascular Medicine PDF

Author: Subhi J. Al'Aref

Publisher: Academic Press

Published: 2020-11-20

Total Pages: 456

ISBN-13: 0128202742

DOWNLOAD EBOOK →

Machine Learning in Cardiovascular Medicine addresses the ever-expanding applications of artificial intelligence (AI), specifically machine learning (ML), in healthcare and within cardiovascular medicine. The book focuses on emphasizing ML for biomedical applications and provides a comprehensive summary of the past and present of AI, basics of ML, and clinical applications of ML within cardiovascular medicine for predictive analytics and precision medicine. It helps readers understand how ML works along with its limitations and strengths, such that they can could harness its computational power to streamline workflow and improve patient care. It is suitable for both clinicians and engineers; providing a template for clinicians to understand areas of application of machine learning within cardiovascular research; and assist computer scientists and engineers in evaluating current and future impact of machine learning on cardiovascular medicine. Provides an overview of machine learning, both for a clinical and engineering audience Summarize recent advances in both cardiovascular medicine and artificial intelligence Discusses the advantages of using machine learning for outcomes research and image processing Addresses the ever-expanding application of this novel technology and discusses some of the unique challenges associated with such an approach

Nonlinear Analysis for Human Movement Variability

Nonlinear Analysis for Human Movement Variability PDF

Author: Nicholas Stergiou

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 475

ISBN-13: 131536008X

DOWNLOAD EBOOK →

How Does the Body’s Motor Control System Deal with Repetition? While the presence of nonlinear dynamics can be explained and understood, it is difficult to be measured. A study of human movement variability with a focus on nonlinear dynamics, Nonlinear Analysis for Human Movement Variability, examines the characteristics of human movement within this framework, explores human movement in repetition, and explains how and why we analyze human movement data. It takes an in-depth look into the nonlinear dynamics of systems within and around us, investigates the temporal structure of variability, and discusses the properties of chaos and fractals as they relate to human movement. Providing a foundation for the use of nonlinear analysis and the study of movement variability in practice, the book describes the nonlinear dynamical features found in complex biological and physical systems, and introduces key concepts that help determine and identify patterns within the fluctuations of data that are repeated over time. It presents commonly used methods and novel approaches to movement analysis that reveal intriguing properties of the motor control system and introduce new ways of thinking about variability, adaptability, health, and motor learning. In addition, this text: Demonstrates how nonlinear measures can be used in a variety of different tasks and populations Presents a wide variety of nonlinear tools such as the Lyapunov exponent, surrogation, entropy, and fractal analysis Includes examples from research on how nonlinear analysis can be used to understand real-world applications Provides numerous case studies in postural control, gait, motor control, and motor development Nonlinear Analysis for Human Movement Variability advances the field of human movement variability research by dissecting human movement and studying the role of movement variability. The book proposes new ways to use nonlinear analysis and investigate the temporal structure of variability, and enables engineers, movement scientists, clinicians, and those in related disciplines to effectively apply nonlinear analysis in practice.

VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering

VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering PDF

Author: César A. González Díaz

Publisher: Springer Nature

Published: 2019-09-30

Total Pages: 1518

ISBN-13: 3030306488

DOWNLOAD EBOOK →

This book gathers the joint proceedings of the VIII Latin American Conference on Biomedical Engineering (CLAIB 2019) and the XLII National Conference on Biomedical Engineering (CNIB 2019). It reports on the latest findings and technological outcomes in the biomedical engineering field. Topics include: biomedical signal and image processing; biosensors, bioinstrumentation and micro-nanotechnologies; biomaterials and tissue engineering. Advances in biomechanics, biorobotics, neurorehabilitation, medical physics and clinical engineering are also discussed. A special emphasis is given to practice-oriented research and to the implementation of new technologies in clinical settings. The book provides academics and professionals with extensive knowledge on and a timely snapshot of cutting-edge research and developments in the field of biomedical engineering.