New Trends in Shape Optimization

New Trends in Shape Optimization PDF

Author: Aldo Pratelli

Publisher: Birkhäuser

Published: 2015-12-01

Total Pages: 312

ISBN-13: 3319175637

DOWNLOAD EBOOK →

This volume reflects “New Trends in Shape Optimization” and is based on a workshop of the same name organized at the Friedrich-Alexander University Erlangen-Nürnberg in September 2013. During the workshop senior mathematicians and young scientists alike presented their latest findings. The format of the meeting allowed fruitful discussions on challenging open problems, and triggered a number of new and spontaneous collaborations. As such, the idea was born to produce this book, each chapter of which was written by a workshop participant, often with a collaborator. The content of the individual chapters ranges from survey papers to original articles; some focus on the topics discussed at the Workshop, while others involve arguments outside its scope but which are no less relevant for the field today. As such, the book offers readers a balanced introduction to the emerging field of shape optimization.

Shape Optimization Problems

Shape Optimization Problems PDF

Author: Hideyuki Azegami

Publisher: Springer Nature

Published: 2020-09-30

Total Pages: 646

ISBN-13: 9811576181

DOWNLOAD EBOOK →

This book provides theories on non-parametric shape optimization problems, systematically keeping in mind readers with an engineering background. Non-parametric shape optimization problems are defined as problems of finding the shapes of domains in which boundary value problems of partial differential equations are defined. In these problems, optimum shapes are obtained from an arbitrary form without any geometrical parameters previously assigned. In particular, problems in which the optimum shape is sought by making a hole in domain are called topology optimization problems. Moreover, a problem in which the optimum shape is obtained based on domain variation is referred to as a shape optimization problem of domain variation type, or a shape optimization problem in a limited sense. Software has been developed to solve these problems, and it is being used to seek practical optimum shapes. However, there are no books explaining such theories beginning with their foundations. The structure of the book is shown in the Preface. The theorems are built up using mathematical results. Therefore, a mathematical style is introduced, consisting of definitions and theorems to summarize the key points. This method of expression is advanced as provable facts are clearly shown. If something to be investigated is contained in the framework of mathematics, setting up a theory using theorems prepared by great mathematicians is thought to be an extremely effective approach. However, mathematics attempts to heighten the level of abstraction in order to understand many things in a unified fashion. This characteristic may baffle readers with an engineering background. Hence in this book, an attempt has been made to provide explanations in engineering terms, with examples from mechanics, after accurately denoting the provable facts using definitions and theorems.

Introduction to Shape Optimization

Introduction to Shape Optimization PDF

Author: Jan Sokolowski

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 254

ISBN-13: 3642581064

DOWNLOAD EBOOK →

This book is motivated largely by a desire to solve shape optimization prob lems that arise in applications, particularly in structural mechanics and in the optimal control of distributed parameter systems. Many such problems can be formulated as the minimization of functionals defined over a class of admissible domains. Shape optimization is quite indispensable in the design and construction of industrial structures. For example, aircraft and spacecraft have to satisfy, at the same time, very strict criteria on mechanical performance while weighing as little as possible. The shape optimization problem for such a structure consists in finding a geometry of the structure which minimizes a given functional (e. g. such as the weight of the structure) and yet simultaneously satisfies specific constraints (like thickness, strain energy, or displacement bounds). The geometry of the structure can be considered as a given domain in the three-dimensional Euclidean space. The domain is an open, bounded set whose topology is given, e. g. it may be simply or doubly connected. The boundary is smooth or piecewise smooth, so boundary value problems that are defined in the domain and associated with the classical partial differential equations of mathematical physics are well posed. In general the cost functional takes the form of an integral over the domain or its boundary where the integrand depends smoothly on the solution of a boundary value problem.

Shape Optimization And Optimal Design

Shape Optimization And Optimal Design PDF

Author: John Cagnol

Publisher: CRC Press

Published: 2017-08-02

Total Pages: 451

ISBN-13: 0203904168

DOWNLOAD EBOOK →

This volume presents developments and advances in modelling passive and active control systems governed by partial differential equations. It emphasizes shape analysis, optimal shape design, controllability, nonlinear boundary control, and stabilization. The authors include essential data on exact boundary controllability of thermoelastic plates with variable transmission coefficients.

Numerical Methods for Optimal Control Problems

Numerical Methods for Optimal Control Problems PDF

Author: Maurizio Falcone

Publisher: Springer

Published: 2019-01-26

Total Pages: 275

ISBN-13: 3030019594

DOWNLOAD EBOOK →

This work presents recent mathematical methods in the area of optimal control with a particular emphasis on the computational aspects and applications. Optimal control theory concerns the determination of control strategies for complex dynamical systems, in order to optimize some measure of their performance. Started in the 60's under the pressure of the "space race" between the US and the former USSR, the field now has a far wider scope, and embraces a variety of areas ranging from process control to traffic flow optimization, renewable resources exploitation and management of financial markets. These emerging applications require more and more efficient numerical methods for their solution, a very difficult task due the huge number of variables. The chapters of this volume give an up-to-date presentation of several recent methods in this area including fast dynamic programming algorithms, model predictive control and max-plus techniques. This book is addressed to researchers, graduate students and applied scientists working in the area of control problems, differential games and their applications.

Introduction to Shape Optimization

Introduction to Shape Optimization PDF

Author: J. Haslinger

Publisher: SIAM

Published: 2003-01-01

Total Pages: 291

ISBN-13: 9780898718690

DOWNLOAD EBOOK →

The efficiency and reliability of manufactured products depend on, among other things, geometrical aspects; it is therefore not surprising that optimal shape design problems have attracted the interest of applied mathematicians and engineers. This self-contained, elementary introduction to the mathematical and computational aspects of sizing and shape optimization enables readers to gain a firm understanding of the theoretical and practical aspects so they may confidently enter this field. Introduction to Shape Optimization: Theory, Approximation, and Computation treats sizing and shape optimization comprehensively, covering everything from mathematical theory (existence analysis, discretizations, and convergence analysis for discretized problems) through computational aspects (sensitivity analysis, numerical minimization methods) to industrial applications. Applications include contact stress minimization for elasto-plastic bodies, multidisciplinary optimization of an airfoil, and shape optimization of a dividing tube. By presenting sizing and shape optimization in an abstract way, the authors are able to use a unified approach in the mathematical analysis for a large class of optimization problems in various fields of physics. Audience: the book is written primarily for students of applied mathematics, scientific computing, and mechanics. Most of the material is directed toward graduate students, although a portion of it is suitable for senior undergraduate students. Readers are assumed to have some knowledge of partial differential equations and their numerical solution, as well as modern programming language such as C++ Fortran 90.

New Trends in Geometric Analysis

New Trends in Geometric Analysis PDF

Author: Antonio Alarcón

Publisher: Springer Nature

Published: 2023-11-25

Total Pages: 398

ISBN-13: 3031399161

DOWNLOAD EBOOK →

The aim of this book is to provide an overview of some of the progress made by the Spanish Network of Geometric Analysis (REAG, by its Spanish acronym) since its born in 2007. REAG was created with the objective of enabling the interchange of ideas and the knowledge transfer between several Spanish groups having Geometric Analysis as a common research line. This includes nine groups at Universidad Autónoma de Barcelona, Universidad Autónoma de Madrid, Universidad de Granada, Universidad Jaume I de Castellón, Universidad de Murcia, Universidad de Santiago de Compostela and Universidad de Valencia. The success of REAG has been substantiated with regular meetings and the publication of research papers obtained in collaboration between the members of different nodes. On the occasion of the 15th anniversary of REAG this book aims to collect some old and new contributions of this network to Geometric Analysis. The book consists of thirteen independent chapters, all of them authored by current members of REAG. The topics under study cover geometric flows, constant mean curvature surfaces in Riemannian and sub-Riemannian spaces, integral geometry, potential theory and Riemannian geometry, among others. Some of these chapters have been written in collaboration between members of different nodes of the network, and show the fruitfulness of the common research atmosphere provided by REAG. The rest of the chapters survey a research line or present recent progresses within a group of those forming REAG. Surveying several research lines and offering new directions in the field, the volume is addressed to researchers (including postdocs and PhD students) in Geometric Analysis in the large.

Geometric Science of Information

Geometric Science of Information PDF

Author: Frank Nielsen

Publisher: Springer

Published: 2015-10-24

Total Pages: 788

ISBN-13: 331925040X

DOWNLOAD EBOOK →

This book constitutes the refereed proceedings of the Second International Conference on Geometric Science of Information, GSI 2015, held in Palaiseau, France, in October 2015. The 80 full papers presented were carefully reviewed and selected from 110 submissions and are organized into the following thematic sessions: Dimension reduction on Riemannian manifolds; optimal transport; optimal transport and applications in imagery/statistics; shape space and diffeomorphic mappings; random geometry/homology; Hessian information geometry; topological forms and Information; information geometry optimization; information geometry in image analysis; divergence geometry; optimization on manifold; Lie groups and geometric mechanics/thermodynamics; computational information geometry; Lie groups: novel statistical and computational frontiers; geometry of time series and linear dynamical systems; and Bayesian and information geometry for inverse problems.

Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition

Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition PDF

Author: Michel C. Delfour

Publisher: SIAM

Published: 2019-12-19

Total Pages: 445

ISBN-13: 1611975964

DOWNLOAD EBOOK →

This second edition provides an enhanced exposition of the long-overlooked Hadamard semidifferential calculus, first introduced in the 1920s by mathematicians Jacques Hadamard and Maurice René Fréchet. Hadamard semidifferential calculus is possibly the largest family of nondifferentiable functions that retains all the features of classical differential calculus, including the chain rule, making it a natural framework for initiating a large audience of undergraduates and non-mathematicians into the world of nondifferentiable optimization. Introduction to Optimization and Hadamard Semidifferential Calculus, Second Edition builds upon its prior edition’s foundations in Hadamard semidifferential calculus, showcasing new material linked to convex analysis and nonsmooth optimization. It presents a modern treatment of optimization and Hadamard semidifferential calculus while remaining at a level that is accessible to undergraduate students, and challenges students with exercises related to problems in such fields as engineering, mechanics, medicine, physics, and economics. Answers are supplied in Appendix B. Students of mathematics, physics, engineering, economics, and other disciplines that demand a basic knowledge of mathematical analysis and linear algebra will find this a fitting primary or companion resource for their studies. This textbook has been designed and tested for a one-term course at the undergraduate level. In its full version, it is appropriate for a first-year graduate course and as a reference.