New Processes for Nutrient Recovery from Wastes

New Processes for Nutrient Recovery from Wastes PDF

Author: Matias B. Vanotti

Publisher: Frontiers Media SA

Published: 2019-12-09

Total Pages: 153

ISBN-13: 2889632199

DOWNLOAD EBOOK →

Global demand for mineral fertilizers is continuously increasing, while large amounts of organic wastes are being disposed without use as a resource, resulting in soil, water and air pollution. Current trends of intensification, expansion and agglomeration of livestock production result in a net import of nutrients that lead to a surplus in some production areas. Therefore, new processes and technologies to recover and re-use nutrients from both solid and liquid wastes are desirable to close the loop on the nutrient cycle in modern human society and address future scarcity of non-renewable nutrients and fossil-based fertilizers. This Research Topic aims to present scientific progress regarding processes and technologies that allow recovery and re-use of nutrients from wastes, the selective recovery of mineral nutrients (ammonia and phosphates), the production of new organic fertilizers, and evaluation of their relative agronomic efficiency. The articles within provide a stronger recognition of the importance of nutrient recovery and upcycling in the new horizons of the circular economy.

International Conference on Nutrient Recovery From Wastewater Streams Vancouver, 2009

International Conference on Nutrient Recovery From Wastewater Streams Vancouver, 2009 PDF

Author: Ken Ashley

Publisher: IWA Publishing

Published: 2009-04-30

Total Pages: 846

ISBN-13: 1843392321

DOWNLOAD EBOOK →

Paperback + CD-ROM Closing the loop for nutrients in wastewaters (municipal sewage, animal wastes, food industry, commercial and other liquid waste streams) is a necessary, sustainable development objective, to reduce resource consumption and greenhouse gas emissions. Chemistry, engineering and process integration understanding are all developing quickly, as new processes are now coming online. A new "paradigm" is emerging, globally. Commercial marketing of recovered nutrients as "green fertilizers" or recycling of nutrients through biomass production to new outlets, such as bioenergy, is becoming more widespread. This exciting conference brings together various waste stream industries, regulators, researchers, process engineers and commercial managers, to develop a broad-based, intersectional understanding and joint projects for phosphorus and nitrogen recovery from wastewater streams, as well as reuse. Over 90 papers from over 30 different countries presented in this volume. This conference is sponsored by: • Metro Vancouver • Global Phosphate Forum • Stantec Consulting Ltd. • The Chartered Institution of Water and Environmental Management (CIWEM) • Ostara Nutrient Recovery Technologies, Inc. (ONRTI) • The University of British Columbia (UBC) • The United States Environmental Protection Agency (EPA) • The British Columbia Water and Wastewater Association (BCWWA) • The Canadian Society for Civil Engineering (CSCE) • The Ostara Research Foundation (ORF)

Resource Recovery from Waste

Resource Recovery from Waste PDF

Author: Miriam Otoo

Publisher: Routledge

Published: 2018-03-20

Total Pages: 1257

ISBN-13: 1317703774

DOWNLOAD EBOOK →

Humans generate millions of tons of waste every day. This waste is rich in water, nutrients, energy and organic compounds. Yet waste is not being managed in a way that permits us to derive value from its reuse, whilst millions of farmers struggle with depleted soils and lack of water. This book shows how Resource Recovery and Reuse (RRR) could create livelihoods, enhance food security, support green economies, reduce waste and contribute to cost recovery in the sanitation chain. While many RRR projects fully depend on subsidies and hardly survive their pilot phase, hopeful signs of viable approaches to RRR are emerging around the globe including low- and middle-income countries. These enterprises or projects are tapping into entrepreneurial initiatives and public ̶ private partnerships, leveraging private capital to help realize commercial or social value, shifting the focus from treatment for waste disposal to treatment of waste as a valuable resource for safe reuse. The book provides a compendium of business options for energy, nutrients and water recovery via 24 innovative business models based on an in-depth analysis of over 60 empirical cases, of which 47 from around the world are described and evaluated in a systematic way. The focus is on organic municipal, agro-industrial and food waste, including fecal sludge, supporting a diverse range of business models with potential for large-scale out-and up-scaling.

Clean Energy and Resource Recovery

Clean Energy and Resource Recovery PDF

Author: Vinay Kumar Tyagi

Publisher: Elsevier

Published: 2021-11-10

Total Pages: 484

ISBN-13: 0323901794

DOWNLOAD EBOOK →

Clean Energy and Resource Recovery: Wastewater Treatment Plants as Bio-refineries, Volume 2, summarizes the fundamentals of various treatment modes applied to the recovery of energy and value-added products from wastewater treatment plants. The book addresses the production of biofuel, heat, and electricity, chemicals, feed, and other products from municipal wastewater, industrial wastewater, and sludge. It intends to provide the readers an account of up-to-date information on the recovery of biofuels and other value-added products using conventional and advanced technological developments. The book starts with identifying the key problems of the sectors and then provides solutions to them with step-by-step guidance on the implementation of processes and procedures. Titles compiled in this book further explore related issues like the safe disposal of leftovers, from a local to global scale. Finally, the book sheds light on how wastewater treatment facilities reduce stress on energy systems, decrease air and water pollution, build resiliency, and drive local economic activity.As a compliment to Volume 1: Biomass Waste Based Biorefineries, Clean Energy and Resource Recovery, Volume 2: Wastewater Treatment Plants as Bio-refineries is a comprehensive reference on all aspects of energy and resource recovery from wastewater. The book is going to be a handy reference tool for energy researchers, environmental scientists, and civil, chemical, and municipal engineers interested in waste-to-energy. Offers a comprehensive overview of the fundamental treatments and methods used in the recovery of energy and value-added products from wastewater Identifies solutions to key problems related to wastewater to energy/resource recovery through conventional and advanced technologies and explore the alternatives Provides step-by-step guidance on procedures and calculations from practical field data Includes successful case studies from both developing and developed countries

Biorefinery of Inorganics

Biorefinery of Inorganics PDF

Author: Erik Meers

Publisher: John Wiley & Sons

Published: 2020-04-29

Total Pages: 472

ISBN-13: 1118921461

DOWNLOAD EBOOK →

Provides complete coverage of the recovery of mineral nutrients from biomass and organic waste This book presents a comprehensive overview of the potential for mineral recovery from wastes, addressing technological issues as well as economic, ecological, and agronomic full-scale field assessments. It serves as a complete reference work for experts in the field and provides teaching material for future experts specializing in environmental technology sectors. Biorefinery of Inorganics: Recovering Mineral Nutrients from Biomass and Organic Waste starts by explaining the concept of using anaerobic digestion as a biorefinery for production of an energy carrier in addition to mineral secondary resources. It then discusses the current state of mineral fertilizer use throughout the world, offering readers a complete look at the resource availability and energy intensity. Technical aspects of mineral recovery organic (waste-)streams is discussed next, followed by an examination of the economics of biobased products and their mineral counterparts. The book also covers the environmental impact assessment of the production and use of bio-based fertilizers; modelling and optimization of nutrient recovery from wastes; and more. Discusses global production and consumption of mineral fertilizers Introduces technologies for the recovery of mineral NPK from organic wastes and residues Covers chemical characterization and speciation of refined secondary resources, and shows readers how to assess biobased mineral resources Discusses applications of recovered minerals in the inorganic chemistry sector Compares the economics of biobased products with current fossil-based counterparts Offers an ecological assessment of introducing biobased products in the current fertilizer industry Edited by leading experts in the field Biorefinery of Inorganics: Recovering Mineral Nutrients from Biomass and Organic Waste is an ideal book for scientists, environmental engineers, and end-users in the agro-industry, the waste industry, water and wastewater treatment, and agriculture. It will also be of great benefit to policy makers and regulators working in these fields.

Food Waste to Valuable Resources

Food Waste to Valuable Resources PDF

Author: Rajesh Banu

Publisher: Academic Press

Published: 2020-04-28

Total Pages: 464

ISBN-13: 0128183543

DOWNLOAD EBOOK →

Food Waste to Valuable Resources: Applications and Management compiles current information pertaining to food waste, placing particular emphasis on the themes of food waste management, biorefineries, valuable specialty products and technoeconomic analysis. Following its introduction, this book explores new valuable resource technologies, the bioeconomy, the technoeconomical evaluation of food-waste-based biorefineries, and the policies and regulations related to a food-waste-based economy. It is an ideal reference for researchers and industry professionals working in the areas of food waste valorization, food science and technology, food producers, policymakers and NGOs, environmental technologists, environmental engineers, and students studying environmental engineering, food science, and more. Presents recent advances, trends and challenges related to food waste valorization Contains invaluable knowledge on of food waste management, biorefineries, valuable specialty products and technoeconomic analysis Highlights modern advances and applications of food waste bioresources in various products’ recovery

Small & Decentralized Wastewater Management Systems

Small & Decentralized Wastewater Management Systems PDF

Author: Ronald W. Crites

Publisher: McGraw-Hill Science/Engineering/Math

Published: 1998-04-02

Total Pages: 1112

ISBN-13:

DOWNLOAD EBOOK →

Decentralized Wastewater Management presents a comprehensive approach to the design of both conventional and innovative systems for the treatment and disposal of wastewater or the reuse of treaded effluent. Smaller treatment plants, which are the concern of most new engineers, are the primary focus of this important book.

Waste Valorisation

Waste Valorisation PDF

Author: Carol Sze Ki Lin

Publisher: John Wiley & Sons

Published: 2020-12-14

Total Pages: 282

ISBN-13: 1119502705

DOWNLOAD EBOOK →

A guide to the wide-variety of waste valorisation techniques related to various biomass, waste materials and by products Waste Valorisation provides a comprehensive review of waste chemistry and its application to the generation of value-added products. The authors – noted experts on the topic – offer a clear understanding of waste diversity, drivers and policies governing its valorisation based on the location. The book provides information on the principles behind various valorisation schemes and offers a description of general treatment options with their evaluation guidelines in terms of cost, energy consumption and waste generation. Each of the book's chapters contain an introduction which summarises the current production and processing methods, yields, energy sources and other pertinent information for each specific type of waste. The authors focus on the most relevant novel technologies for value-added processing of waste streams or industrial by-products which can readily be integrated into current waste management systems. They also provide the pertinent technical, economic, social and environmental evaluations of bioconversions as future sustainable technologies in a biorefinery. This important book: Presents the most current technologies which integrate waste and/or by-product valorisation Includes discussions on end-product purity and life-cycle assessment challenges Explores relevant novel technologies for value-added processing of waste streams or industrial by-products which can be integrated into current waste management systems Offers a guide to waste reuse, a key sustainability goal for existing biorefineries wishing to reduce material and environmental costs Written for academic researchers and industrial scientists working in agricultural and food production, bioconversions and waste management professionals, Waste Valorisation is an authoritative guide to the chemistry and applications of waste materials and provides an overview of the most recent developments in the field.

Removal and Recovery of Nutrients from Wastewater in Urban and Rural Contexts

Removal and Recovery of Nutrients from Wastewater in Urban and Rural Contexts PDF

Author: Kevin Orner

Publisher:

Published: 2019

Total Pages: 128

ISBN-13:

DOWNLOAD EBOOK →

Efforts to remove and recover nutrients from wastewater are motivated by the United Nations Sustainable Development Goals and the National Academy of Engineering Grand Challenges of Engineering. Of the seventeen Sustainable Development Goals (SDGs), multiple SDGs relate to managing nutrients in wastewater. SDG 6, which is to “ensure availability and sustainable management of water and sanitation for all,” contains targets that aim to improve water quality by reducing pollution, halve the amount of untreated wastewater released to the environment, and increase recycling and safe reuse of wastewater (UN, 2017). SDG 2 seeks to improve food security and SDG 12 seeks to sustainably manage natural resources. Similarly, the National Academy of Engineering Grand Challenges of Engineering highlight managing the nitrogen cycle and providing access to clean water (NAE, 2019). Centralized wastewater treatment plants (WWTPs) have historically been designed to remove nutrients (such as nitrogen and phosphorus) and other contaminants prior to discharge. Modern wastewater treatment practices integrate recovery of resources including nutrients, energy, and water. The many available technologies, coupled with competing priorities, can complicate community decision-making on the choice of technology and the scale at which to implement the technology (i.e. building, community, or city), as well as determining how new upstream treatment may affect existing downstream treatment. Technologies that recover energy or manage nutrients such as anaerobic digestion, struvite precipitation, and microbial fuel cells can be implemented at a variety of scales in urban settings and may also be viable for influent types such as agricultural waste. Therefore, the overall goal of this dissertation is to contribute to the achievement of multiple sustainable development goals through the removal and recovery of nitrogen and phosphorus from a variety of influents at a variety of scales. One type of decision-making tool that assists in the choice of nutrient management technologies is a House of Quality. I developed a tool based on the House of Quality that integrated multiple priorities at three scales in a sewershed and produced rankings that generally align with current wastewater treatment practice. Accordingly, top-ranked city-scale technologies are those commonly employed (e.g. A2O, oxidation ditch) that use the dissolved organic carbon present in the wastewater to drive denitrification. Similarly, conventional treatment (e.g. flush toilet connected to a sewer) is ranked highest at the building scale because of its easy maintenance, small footprint, and inoffensive aesthetics. However, future trends such as technology development will likely affect the technologies, weightings, and scores and therefore improve the ranking of novel and emerging technologies. This trend may be amplified by the implementation of test beds, which can provide opportunities to improve the technical characteristics of developing technologies while minimizing risk for municipalities. The House of Quality planning tool was utilized in an in silico case study to analyze nutrient management technologies at three scales across the Northwest Regional Water Reclamation Facility sewershed in Hillsborough County, FL. The study demonstrated that employing treatment technologies upstream from the centralized wastewater treatment (i.e. building-scale source separation and community-scale technologies) could reduce nitrogen loading to the mainstream treatment train by over 50%. Sidestream treatment (i.e. the liquid effluent of anaerobic digestion that typically recycles back to the beginning of the mainstream treatment process) has minimal impact in nitrogen reduction, but is effective in reducing phosphorus loading to the mainstream due to high quantities of phosphorus recycling back to the head of the plant. These results can inform decision-makers about which context-specific nutrient management technologies to consider at a variety of scales, and illustrate that sidestream technologies can be the most effective in reducing phosphorus loading while building- and community-scale technologies can be most effective in reducing nitrogen loading to the centralized treatment plant. Struvite precipitation and microbial fuel cells (MFCs) can be used in combination to manage nutrients and recover energy in sidestreams of centralized WWTPs. Because the liquid effluent from engineered struvite precipitation often contains high concentrations of total nitrogen, I constructed and demonstrated a fixed-film nitrification reactor and a two-chambered MFC to further reduce total nitrogen and recover energy. The primary benefit of the MFC in the technology demonstrated here is not its ability to produce energy, but rather its ability to remove additional nitrogen through nitritation and denitritation. The sidestream nutrient removal prevents nutrients from returning to mainstream treatment, reducing operational costs. Such improvements to wastewater treatment processes can facilitate the transition to the resource recovery facility of the future by becoming a net-energy producer while also achieving the simultaneous benefits of nutrient recovery/removal and reduced costs associated with mainstream treatment. Nutrients and energy can also be recovered in agricultural settings. In this dissertation I studied an agricultural waste treatment system comprising a small-scale tubular anaerobic digester integrated with a low-cost, locally produced struvite precipitation reactor. This study investigated two digesters that treated swine waste in rural Costa Rica. I also facilitated construction of a pilot-scale struvite precipitation reactor that was built on site using local labor and local materials for approximately $920. Local products such as bittern (magnesium source) and soda ash (base) allowed for the production of struvite, a fertilizer that can replace synthetic fertilizer for rural farmers. Liquid-phase concentrations of PO43-P and NH4+-N in agricultural wastewater increased by averages of 131% and 116%, respectively, due to release from the swine waste during anaerobic digestion. Despite this increase in liquid-phase concentrations, an average of 25% of total phosphorus and 4% of total nitrogen was removed from the influent swine manure through sedimentation in the digesters. During struvite precipitation, an average of 79% of PO43-P and 12% of NH4+-N was removed from the waste stream and produced a solid with percentages (mass basis) of Mg, N, P of 9.9%, 2.4%, and 12.8%, respectively, indicating that struvite (MgNH4PO4) was likely formed. The treatment system offers multiple benefits to the local community: improved sanitation, removal of nutrients to prevent eutrophication, recovery of struvite as a fertilizer, and production of a final effluent stream that is suitable quality to be used in aquaculture. These are examples of how, more generally, quantifying nutrient recovery from agricultural waste and understanding recovery mechanisms can facilitate progress toward multiple sustainable development goals by improving sanitation, promoting sustainable management of wastes and natural resources, improving food security, and supporting local ecosystems. Managing nutrients from a variety of influent types at different scales can contribute to the achievement of multiple sustainable development goals. Worldwide trends of population growth and resource depletion highlight the need for models to easily allow decision-makers the ability to understand the fate of nutrients and implement infrastructure accordingly.