New Generalized Functions and Multiplication of Distributions

New Generalized Functions and Multiplication of Distributions PDF

Author: J.F. Colombeau

Publisher: Elsevier

Published: 2000-04-01

Total Pages: 389

ISBN-13: 008087195X

DOWNLOAD EBOOK →

This volume presents a new mathematical theory of generalized functions, more general than Distribution Theory, giving a rigorous mathematical sense to any product of a finite number of distributions and to heuristic computations of Quantum Field Theory. Although the physical motivations are emphasized, the book is also addressed to mathematicians with no knowledge of physics. This work opens a new domain of research in both pure and applied mathematics.

Elementary Introduction to New Generalized Functions

Elementary Introduction to New Generalized Functions PDF

Author: J.F. Colombeau

Publisher: Elsevier

Published: 2011-08-18

Total Pages: 297

ISBN-13: 0080872247

DOWNLOAD EBOOK →

The author's previous book `New Generalized Functions and Multiplication of Distributions' (North-Holland, 1984) introduced `new generalized functions' in order to explain heuristic computations of Physics and to give a meaning to any finite product of distributions. The aim here is to present these functions in a more direct and elementary way. In Part I, the reader is assumed to be familiar only with the concepts of open and compact subsets of R&eegr;, of C∞ functions of several real variables and with some rudiments of integration theory. Part II defines tempered generalized functions, i.e. generalized functions which are, in some sense, increasing at infinity no faster than a polynomial (as well as all their partial derivatives). Part III shows that, in this setting, the partial differential equations have new solutions. The results obtained show that this setting is perfectly adapted to the study of nonlinear partial differential equations, and indicate some new perspectives in this field.

Multiplication of Distributions

Multiplication of Distributions PDF

Author: Jean F. Colombeau

Publisher: Springer

Published: 2006-11-15

Total Pages: 193

ISBN-13: 3540475109

DOWNLOAD EBOOK →

This book presents recent and very elementary developments of a theory of multiplication of distributions in the field of explicit and numerical solutions of systems of PDEs of physics (nonlinear elasticity, elastoplasticity, hydrodynamics, multifluid flows, acoustics). The prerequisites are kept to introductory calculus level so that the book remains accessible at the same time to pure mathematicians (as a smoothand somewhat heuristic introdcution to this theory) and to applied mathematicians, numerical engineers and theoretical physicists (as a tool to treat problems involving products of distributions).

Distribution Theory and Transform Analysis

Distribution Theory and Transform Analysis PDF

Author: A.H. Zemanian

Publisher: Courier Corporation

Published: 2011-11-30

Total Pages: 400

ISBN-13: 0486151948

DOWNLOAD EBOOK →

Distribution theory, a relatively recent mathematical approach to classical Fourier analysis, not only opened up new areas of research but also helped promote the development of such mathematical disciplines as ordinary and partial differential equations, operational calculus, transformation theory, and functional analysis. This text was one of the first to give a clear explanation of distribution theory; it combines the theory effectively with extensive practical applications to science and engineering problems. Based on a graduate course given at the State University of New York at Stony Brook, this book has two objectives: to provide a comparatively elementary introduction to distribution theory and to describe the generalized Fourier and Laplace transformations and their applications to integrodifferential equations, difference equations, and passive systems. After an introductory chapter defining distributions and the operations that apply to them, Chapter 2 considers the calculus of distributions, especially limits, differentiation, integrations, and the interchange of limiting processes. Some deeper properties of distributions, such as their local character as derivatives of continuous functions, are given in Chapter 3. Chapter 4 introduces the distributions of slow growth, which arise naturally in the generalization of the Fourier transformation. Chapters 5 and 6 cover the convolution process and its use in representing differential and difference equations. The distributional Fourier and Laplace transformations are developed in Chapters 7 and 8, and the latter transformation is applied in Chapter 9 to obtain an operational calculus for the solution of differential and difference equations of the initial-condition type. Some of the previous theory is applied in Chapter 10 to a discussion of the fundamental properties of certain physical systems, while Chapter 11 ends the book with a consideration of periodic distributions. Suitable for a graduate course for engineering and science students or for a senior-level undergraduate course for mathematics majors, this book presumes a knowledge of advanced calculus and the standard theorems on the interchange of limit processes. A broad spectrum of problems has been included to satisfy the diverse needs of various types of students.

A Nonlinear Theory of Generalized Functions

A Nonlinear Theory of Generalized Functions PDF

Author: Hebe de Azevedo Biagioni

Publisher: Springer

Published: 2006-11-14

Total Pages: 226

ISBN-13: 3540469818

DOWNLOAD EBOOK →

This book provides a simple introduction to a nonlinear theory of generalized functions introduced by J.F. Colombeau, which gives a meaning to any multiplication of distributions. This theory extends from pure mathematics (it presents a faithful generalization of the classical theory of C? functions and provides a synthesis of most existing multiplications of distributions) to physics (it permits the resolution of ambiguities that appear in products of distributions), passing through the theory of partial differential equations both from the theoretical viewpoint (it furnishes a concept of weak solution of pde's leading to existence-uniqueness results in many cases where no distributional solution exists) and the numerical viewpoint (it introduces new and efficient methods developed recently in elastoplasticity, hydrodynamics and acoustics). This text presents basic concepts and results which until now were only published in article form. It is in- tended for mathematicians but, since the theory and applications are not dissociated it may also be useful for physicists and engineers. The needed prerequisites for its reading are essentially reduced to the classical notions of differential calculus and the theory of integration over n-dimensional euclidean spaces.

Nonlinear Theory of Generalized Functions

Nonlinear Theory of Generalized Functions PDF

Author: Michael Oberguggenberger

Publisher: Routledge

Published: 2022-02-28

Total Pages: 400

ISBN-13: 1351428039

DOWNLOAD EBOOK →

Questions regarding the interplay of nonlinearity and the creation and propagation of singularities arise in a variety of fields-including nonlinear partial differential equations, noise-driven stochastic partial differential equations, general relativity, and geometry with singularities. A workshop held at the Erwin-Schrödinger International Institute for Mathematical Physics in Vienna investigated these questions and culminated in this volume of invited papers from experts in the fields of nonlinear partial differential equations, structure theory of generalized functions, geometry and general relativity, stochastic partial differential equations, and nonstandard analysis. The authors provide the latest research relevant to work in partial differential equations, mathematical physics, and nonlinear analysis. With a focus on applications, this books provides a compilation of recent approaches to the problem of singularities in nonlinear models. The theory of differential algebras of generalized functions serves as the central theme of the project, along with its interrelations with classical methods.

Generalized Functions, Convergence Structures, and Their Applications

Generalized Functions, Convergence Structures, and Their Applications PDF

Author: Bogoljub Stankovic

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 432

ISBN-13: 1461310555

DOWNLOAD EBOOK →

This Proceedings consists of a collection of papers presented at the International Conference "Generalized functions, convergence structures and their applications" held from June 23-27, 1987 in Dubrovnik, Yugoslavia (GFCA-87): 71 participants from 21 countr~es from allover the world took part in the Conference. Proceedings reflects the work of the Conference. Plenary lectures of J. Burzyk, J. F. Colombeau, W. Gahler, H. Keiter, H. Komatsu, B. Stankovic, H. G. Tillman, V. S. Vladimirov provide an up-to-date account of the cur rent state of the subject. All these lectures, except H. G. Tillman's, are published in this volume. The published communications give the contemporary problems and achievements in the theory of generalized functions, in the theory of convergence structures and in their applications, specially in the theory of partial differential equations and in the mathematical physics. New approaches to the theory of generalized functions are presented, moti vated by concrete problems of applications. The presence of articles of experts in mathematical physics contributed to this aim. At the end of the volume one can find presented open problems which also point to further course of development in the theory of generalized functions and convergence structures. We are very grateful to Mr. Milan Manojlovic who typed these Proce edings with extreme skill and diligence and with inexhaustible patience.

A Nonlinear Theory of Generalized Functions

A Nonlinear Theory of Generalized Functions PDF

Author: Hebe de Azevedo Biagioni

Publisher: Springer

Published: 1990-03-21

Total Pages: 218

ISBN-13: 9783540524083

DOWNLOAD EBOOK →

This book provides a simple introduction to a nonlinear theory of generalized functions introduced by J.F. Colombeau, which gives a meaning to any multiplication of distributions. This theory extends from pure mathematics (it presents a faithful generalization of the classical theory of C? functions and provides a synthesis of most existing multiplications of distributions) to physics (it permits the resolution of ambiguities that appear in products of distributions), passing through the theory of partial differential equations both from the theoretical viewpoint (it furnishes a concept of weak solution of pde's leading to existence-uniqueness results in many cases where no distributional solution exists) and the numerical viewpoint (it introduces new and efficient methods developed recently in elastoplasticity, hydrodynamics and acoustics). This text presents basic concepts and results which until now were only published in article form. It is in- tended for mathematicians but, since the theory and applications are not dissociated it may also be useful for physicists and engineers. The needed prerequisites for its reading are essentially reduced to the classical notions of differential calculus and the theory of integration over n-dimensional euclidean spaces.