New Developments in High-Pressure Mineral Physics and Applications to the Earth's Interior

New Developments in High-Pressure Mineral Physics and Applications to the Earth's Interior PDF

Author: D.C. Rubie

Publisher: Gulf Professional Publishing

Published: 2004

Total Pages: 662

ISBN-13: 9780444516923

DOWNLOAD EBOOK →

Geophysical measurements, such as the lateral variations in seismic wave velocities that are imaged by seismic tomography, provide the strongest constraints on the structure of the Earth's deep interior. In order to interpret such measurements in terms of mineralogical/compositional models of the Earth's interior, data on the physical and chemical properties of minerals at high pressures and temperatures are essential. Knowledge of thermodynamics, phase equilibria, crystal chemistry, crystallography, rheology, diffusion and heat transport are required to characterize the structure and dynamics of the Earth's deep interior as well as the processes by which the Earth originally differentiated. Many experimental studies have been made possible only by a range of technical developments in the quest to achieve high pressures and temperatures in the laboratory. At the same time, analytical methods, including X-ray diffraction, a variety of spectroscopic techniques, electron microscopy, ultrasonic interferometry, and methods for rheological investigations have been developed and greatly improved. In recent years, major progress has been made also in the field of computational mineralogy whereby ab initio simulations are used to investigate the structural and dynamical properties of condensed matter at an atomistic level. This volume contains a broad range of contributions that typify and summarize recent progress in the areas of high-pressure mineral physics as well as associated technical developments.

Advances in High-Pressure Techniques for Geophysical Applications

Advances in High-Pressure Techniques for Geophysical Applications PDF

Author: J. Chen

Publisher: Elsevier

Published: 2011-10-13

Total Pages: 532

ISBN-13: 0080457665

DOWNLOAD EBOOK →

High-pressure mineral physics is a field that is strongly driven by the development of new technology. Fifty years ago, when experimentally achievable pressures were limited to just 25 GPa, little was know about the mineralogy of the Earth's lower mantle. Silicate perovskite, the likely dominant mineral of the deep Earth, was identified only when the high-pressure techniques broke the pressure barrier of 25 GPa in 1970s. However, as the maximum achievable pressure reached beyond one Megabar (100 GPa) and even to the pressure of Earth’s core on minute samples, new discoveries increasingly were fostered by the development of new analytical techniques and improvements in sensitivity and precision of existing techniques. The book consists of six sections which group the papers according to their main topics: a) Elastic and Anelastic Properties; b) Rheology; c) Melt and Glass Properties; d) Structural and Magnetic Properties; e) Diffraction and Spectroscopy; f) Pressure Calibration and Generation. As many papers cover multiple topics, readers may find papers of interest in different sections. All papers are prepared with emphasis on technical details suitable for a technical reference. Many on-line software resources are also listed in as detailed a manner as possible. However, the URL of the software sites may be subject to change without notice. * State of the art in a very important branch of geophysics, namely the experimental determination of material behavior at the extreme conditions of planetary interiors* Emphasis on technical details suitable for a technical reference* Includes many on-line software resources

Static and Dynamic High Pressure Mineral Physics

Static and Dynamic High Pressure Mineral Physics PDF

Author: Yingwei Fei

Publisher: Cambridge University Press

Published: 2022-11-24

Total Pages: 421

ISBN-13: 1108846106

DOWNLOAD EBOOK →

High pressure mineral physics is a field that has shaped our understanding of deep planetary interiors and revealed new material phenomena occurring at extreme conditions. Comprised of sixteen chapters written by well-established experts, this book covers recent advances in static and dynamic compression techniques and enhanced diagnostic capabilities, including synchrotron X-ray and neutron diffraction, spectroscopic measurements, in situ X-ray diffraction under dynamic loading, and multigrain crystallography at megabar pressures. Applications range from measuring equations of state, elasticity, and deformation of materials at high pressure, to high pressure synthesis, thermochemistry of high pressure phases, and new molecular compounds and superconductivity under extreme conditions. This book also introduces experimental geochemistry in the laser-heated diamond-anvil cell enabled by the focused ion beam technique for sample recovery and quantitative chemical analysis at submicron scale. Each chapter ends with an insightful perspective of future directions, making it an invaluable source for graduate students and researchers.