Neuroglia: Function and Pathology

Neuroglia: Function and Pathology PDF

Author: Alexei Verkhratsky

Publisher: Elsevier

Published: 2023-05-12

Total Pages: 732

ISBN-13: 0128215666

DOWNLOAD EBOOK →

Diverse specialised neuroglial cells guarantee the development, preservation, and health of the central nervous system, the peripheral nervous system, the enteric nervous system, and the special senses. In the central nervous system, it is the astrocytes, oligodendrocytes, and microglia that safeguard nerve cell function and integrity that controls all behaviours and encompasses the cerebral cortex of the brain which is the root of humanity. In the peripheral nervous system, Schwann cells play the leading role, together with satellite glial cells of the sensory and autonomic ganglia, ensuring correct communication between the organs and tissues with the brain and the spinal cord. In the enteric nervous system, specialised enteric glial cells maintain all aspects of gastrointestinal function. Then there are distinctive glial cells of the special senses that ensure how the body perceives and reacts to its environment. In pathology, neuroglia strive to protect the diverse cellular components of the nervous system and are responsible for a proactive programme of posttraumatic restructuring that is aimed at recovery of life-sustaining function. Neuroglia: Function and Pathology provides a highly original and comprehensive account of the physiology and pathophysiology of glial cells in the central and peripheral nervous systems. The first part of the book provides a far-reaching description of glial cell form and function, from their evolution in invertebrates to their complexity in humans, encompassing the developmental origin of the varied glial cell types and their diversity of morphology, molecular biology and cellular physiology. The second part of the book is devoted to an all-embracing evaluation of glial cell pathophysiology, commencing with definitive explanations of the fundamental pathologies of the main glial cell types, and ending in a systematic examination of glial contributions to specific neurological diseases. This book emphasises the central roles played by the different classes of neuroglial cells in the progression and outcome of neurological disorders of the central and peripheral nervous systems and highlights potential of glial cells as therapeutic targets. The book contains more than 2500 key references from over 150 years of glial research and is superbly illustrated with over 350 original and explanatory full colour figures that describe the diverse characteristics and properties of glial cells in health and disease. Under the same cover, this book combines an authoritative reference book for research and clinical neuroscientists and at the same time serves as an instructive textbook for students of neuroscience, from undergraduates to postgraduates. Single volume covering key aspects of glial cell physiology and pathology In depth overview of the history of glial cell research Comprehensive review of glial cell physiology and pathology Authoritative special chapters on the major neurological diseases Full colour throughout, with 360 illustrations

Pathological Potential of Neuroglia

Pathological Potential of Neuroglia PDF

Author: Vladimir Parpura

Publisher: Springer

Published: 2014-09-26

Total Pages: 546

ISBN-13: 1493909746

DOWNLOAD EBOOK →

Pathophysiological states, neurological and psychiatric diseases are almost universally considered from the neurocentric point of view, with neurons being the principal cellular element of pathological process. The brain homeostasis, which lies at the fulcrum of healthy brain function, the compromise of which invariably results in dysfunction/disease, however, is entirely controlled by neuroglia. It is becoming clear that neuroglial cells are involved in various aspects of initiation, progression and resolution of neuropathology. In this book we aim to integrate the body of information that has accumulated in recent years revealing the active role of glia in such pathophysiological processes. Understanding roles of glial cells in pathology will provide new targets for medical intervention and aide the development of much needed therapeutics. This book will be particularly useful for researchers, students, physicians and psychotherapists working in the field of neurobiology, neurology and psychiatry.

The Functional Roles of Glial Cells in Health and Disease

The Functional Roles of Glial Cells in Health and Disease PDF

Author: Rebecca Matsas

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 376

ISBN-13: 1461546850

DOWNLOAD EBOOK →

Thirty-five years ago, when Stephen Kuffler and his colleagues at Harvard initiated a new era of research on the properties and functions of neuroglial cells, very few neuro scientists were impressed at the time with the hypothesis that neuroglial cells could have another, though more subtle, role to play in the nervous system than to provide static support to neurons. Today, very few neuroscientists are unaware of the fact that multiple interactions between neurons and glial cells have been described, and that they consti tute the basis for understanding the function and the pathology of the nervous system. Glial cells outnumber neurons and make up about one-half of the bulk of the nervous system. They are divided into two major classes: first, the macroglia, which include astrocytes and oligodendrocytes in the central nervous system, and the Schwann cells in the peripheral nervous system; and second, the microglial cells. These different classes of glial cells have different functions and contribute in different ways in the devel opment, function, and the pathology of the nervous system.

Enteric Glia

Enteric Glia PDF

Author: Brian D. Gulbransen

Publisher: Biota Publishing

Published: 2014-07-01

Total Pages: 72

ISBN-13: 1615046615

DOWNLOAD EBOOK →

The enteric nervous system (ENS) is a complex neural network embedded in the gut wall that orchestrates the reflex behaviors of the intestine. The ENS is often referred to as the “little brain” in the gut because the ENS is more similar in size, complexity and autonomy to the central nervous system (CNS) than other components of the autonomic nervous system. Like the brain, the ENS is composed of neurons that are surrounded by glial cells. Enteric glia are a unique type of peripheral glia that are similar to astrocytes of the CNS. Yet enteric glial cells also differ from astrocytes in many important ways. The roles of enteric glial cell populations in the gut are beginning to come to light and recent evidence implicates enteric glia in almost every aspect of gastrointestinal physiology and pathophysiology. However, elucidating the exact mechanisms by which enteric glia influence gastrointestinal physiology and identifying how those roles are altered during gastrointestinal pathophysiology remain areas of intense research. The purpose of this e-book is to provide an introduction to enteric glial cells and to act as a resource for ongoing studies on this fascinating population of glia. Table of Contents: Introduction / A Historical Perspective on Enteric Glia / Enteric Glia: The Astroglia of the Gut / Molecular Composition of Enteric Glia / Development of Enteric Glia / Functional Roles of Enteric Glia / Enteric Glia and Disease Processes in the Gut / Concluding Remarks / References / Author Biography

Glial Physiology and Pathophysiology

Glial Physiology and Pathophysiology PDF

Author: Alexei Verkhratsky

Publisher: John Wiley & Sons

Published: 2013-01-31

Total Pages: 473

ISBN-13: 1118402057

DOWNLOAD EBOOK →

Glial Physiology and Pathophysiology provides a comprehensive, advanced text on the biology and pathology of glial cells. Coverae includes: the morphology and interrelationships between glial cells and neurones in different parts of the nervous systems the cellular physiology of the different kinds of glial cells the mechanisms of intra- and inter-cellular signalling in glial networks the mechanisms of glial-neuronal communications the role of glial cells in synaptic plasticity, neuronal survival and development of nervous system the cellular and molecular mechanisms of metabolic neuronal-glial interactions the role of glia in nervous system pathology, including pathology of glial cells and associated diseases - for example, multiple sclerosis, Alzheimer's, Alexander disease and Parkinson's Neuroglia oversee the birth and development of neurones, the establishment of interneuronal connections (the 'connectome'), the maintenance and removal of these inter-neuronal connections, writing of the nervous system components, adult neurogenesis, the energetics of nervous tissue, metabolism of neurotransmitters, regulation of ion composition of the interstitial space and many, many more homeostatic functions. This book primes the reader towards the notion that nervous tissue is not divided into more important and less important cells. The nervous tissue functions because of the coherent and concerted action of many different cell types, each contributing to an ultimate output. This reaches its zenith in humans, with the creation of thoughts, underlying acquisition of knowledge, its analysis and synthesis, and contemplating the Universe and our place in it. An up-to-date and fully referenced text on the most numerous cells in the human brain Detailed coverage of the morphology and interrelationships between glial cells and neurones in different parts of the nervous system Describes the role og glial cells in neuropathology Focus boxes highlight key points and summarise important facts Companion website with downloadable figures and slides

Glial Neurobiology

Glial Neurobiology PDF

Author: Alexei Verkhratsky

Publisher: John Wiley & Sons

Published: 2007-08-20

Total Pages: 230

ISBN-13: 9780470513071

DOWNLOAD EBOOK →

"This volume is a very valuable and much needed contribution." –Quarterly Review of Biology AT LAST - A comprehensive, accessible textbook on glial neurobiology! Glial cells are the most numerous cells in the human brain but for many years have attracted little scientific attention. Neurophysiologists concentrated their research efforts instead, on neurones and neuronal networks because it was thought that they were the key elements responsible for higher brain function. Recent advances, however, indicate this isn’t exactly the case. Not only are astroglial cells the stem elements from which neurones are born, but they also control the development, functional activity and death of neuronal circuits. These ground-breaking developments have revolutionized our understanding of the human brain and the complex interrelationship of glial and neuronal networks in health and disease. Features of this book: an accessible introduction to glial neurobiology including an overview of glial cell function and its active role in neural processes, brain function and nervous system pathology an exploration of all the major types of glial cells including: the astrocytes, oligodendrocytes and microglia of the ACNS and Schwann cells of the peripheral nervous system; the book also presents a broad overview of glial receptors and ion channels an investigation into the role of glial cells in various types of brain diseases including stroke, neurodegenerative diseases such as Alzheimer's, Parkinson's and Alexander's disease, brain oedema, multiple sclerosis and many more a wealth of illustrations, including unique images from the authors' own libraries of images, describing the main features of glial cells Written by two leading experts in the field, Glial Neurobiology provides a concise, authoritative introduction to glial physiology and pathology for undergraduate/postgraduate neuroscience, biomedical, medical, pharmacy, pharmacology, and neurology, neurosurgery and physiology students. It is also an invaluable resource for researchers in neuroscience, physiology, pharmacology and pharmaceutics.

Biology and Pathology of Astrocyte-Neuron Interactions

Biology and Pathology of Astrocyte-Neuron Interactions PDF

Author: Sergey Fedoroff

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 452

ISBN-13: 147579486X

DOWNLOAD EBOOK →

This volume is made up of papers presented at the Second International Altschul Symposium: Biology and Pathology of Astrocyte-Neuron Interactions. The symposium was held in Saskatoon, Canada at the University of Saskatchewn in May, 1992 in memory of Rudolf Altschul, a graduate of the University of Prague and a pioneer in the fields of the biology of the vascular and nervous systems. Dr. Altschul was Professor and Head of the Department of Anatomy at the University of Saskatchewan from 1955 to 1963. The Altschul Symposia were made possible by an endowment left by Anni Altschul and by other contributions. The symposia are held biennially. One of the greatest challenges for present day scientists is to uncover the mechanisms of brain function. Although cellular anatomy of the nervous system has already been well outlined and indeed was delineated by the beginning of the century, experimental analysis of the function of the brain is relatively recent. The framework of the brain is made up of stellate cells, the astrocytes, which are interconnected by means of their processes, thus presenting a meshwork through which the neurons send their axons, accompanied by oligodendrocytes. Microglia are distributed throughout the brain.

Introduction to Neuroglia

Introduction to Neuroglia PDF

Author: Alexei Verkhratsky

Publisher: Biota Publishing

Published: 2014-02-01

Total Pages: 74

ISBN-13: 1615046496

DOWNLOAD EBOOK →

This book is the introduction to a series of e-books dedicated to the physiology and pathophysiology of neuroglia. The topic of neuroglia is generally overlooked in neuroscience curricula across the world, the main attention being focused on the description of excitability of neurons and neuronal networks. The neuroglia, being electrically non-excitable, are universally regarded as supportive cells which do not contribute to information processing. This oversimplified view, however, ignores the tremendous importance of brain homeostasis, which is imperative for the ongoing activity of neuronal networks. It also ignores the truth that specialization of neurons and their ability for rapid propagation and multi-level integration of signals become possible only because of delegation of homeostatic abilities to neuroglia. Furthermore, glial cells contribute to information processing as they can modulate neuronal synaptic transmission. Finally, neuroglia provide the only system of brain defense and as such these cells are intimately involved in all types of neuropathologies, and contribute to both neuroprotection and regeneration of the nervous system. The e-books in this series provide a platform for in-depth learning of all aspects of neuroglial cells function in health and disease.