Manufactured Gas Plant Remediation

Manufactured Gas Plant Remediation PDF

Author: Allen W. Hatheway

Publisher: CRC Press

Published: 2017-12-14

Total Pages: 1052

ISBN-13: 1498796869

DOWNLOAD EBOOK →

The assessment, remediation, and redevelopment of manufactured gas plant (MGP) sites pose a significant technical and financial challenge to successor property owners, including municipalities and other public entities undertaking brownfields revitalization, and to their consulting environmental engineers. Due to the toxicity of many coal tar constituents, sites contaminated as a result of gasworks operations pose a significant threat to public health. This book will discuss the history of the manufactured gas industry in Massachusetts (the largest in the US), as well as the toxicity of gasworks waste products, technical challenges in the cleanup process, and the process for site cleanups.

Evaluation of Persulfate for the Treatment of Manufactured Gas Plant Residuals

Evaluation of Persulfate for the Treatment of Manufactured Gas Plant Residuals PDF

Author: Angela McIsaac

Publisher:

Published: 2013

Total Pages: 174

ISBN-13:

DOWNLOAD EBOOK →

The presence of coal tars in the subsurface associated with former manufactured gas plants (MGPs) offers a remediation challenge due to their complex chemical composition, dissolution behaviour and recalcitrant characteristics. A former MGP site in Clearwater Beach, Florida was characterized and bench-scale analyses were conducted to assess the potential for in situ chemical oxidation (ISCO) using persulfate to treat MGP residuals. Completion of a conceptual site model identified a homogeneous, silty sand aquifer, with an average hydraulic conductivity of approximately 2.3x10-3 cm/s and a groundwater flow rate of 2 cm/day in the direction of S20°E. Six source zones, three near the water table and three in the deep aquifer were estimated to have a total volume of 108 m3. A multi-level well transect was installed to monitor concentrations of dissolved compounds and to estimate mass discharge downgradient of the source zones over time. On average, the morphology of the aqueous concentrations remained consistent with time. A total mass discharge across the transect of 94 mg/day was estimated for site-specific compounds. Bench-scale tests were conducted on aquifer sediments and groundwater samples. The aquifer was determined to have a low buffering capacity, low chemical oxygen demand, and low natural oxidant interaction (NOI) with persulfate. Aqueous batch experiments identified the potential for iron (II) activated persulfate to reduce concentrations of BTEX and PAHs below method detection limits (MDLs). Unactivated persulfate was able to reduce BTEX concentrations to below MDLs after 14 days; however, the concentration of PAH compounds remained above MDLs after 14 days. Higher iron doses within the system were shown to be more effective in reducing BTEX and PAH compounds. Column experiments designed to mimic site conditions were used to evaluate the feasibility of persulfate treatment on impacted sediments from the Clearwater site. Two sets of column experiments were conducted: one using unactivated persulfate followed by alkaline activated persulfate; and one using iron (II) activated persulfate. On average, unactivated persulfate was able to reduce BTEX and PAH aqueous effluent concentrations by> 75% and 40%, respectively, after a total dose of 60 g/g soil. Two additional doses of alkaline activated persulfate (total persulfate dose of ~80g/g soil) in these columns were able to further reduce effluent BTEX and PAH concentrations by> 90% and> 75%, respectively. Iron (II) activated persulfate reduced effluent BTEX concentrations by> 70% and PAHs by> 65% after a total dose of 35 g/g soil. Average reductions in mass for BTEX and PAH compounds were approximately of 48% and 26% respectively in the iron (II) activated persulfate columns, and 24% and 10%, respectively in the alkaline activated persulfate columns. The potential for the ability to use in situ chemical oxidation using persulfate for the remediation of MGP residuals in the subsurface is evaluated using field measurements and bench-scale experimentation. The reductions observed in aqueous phase compounds in MGP groundwater as observed in the laboratory indicate the potential for reductions in groundwater concentrations at this and other contaminated former MGP sites. However, column experiments, indicating the inability for activated persulfate to reduce all identified compounds in the MGP NAPL suggest source treatment with activated persulfate would not reduce concentrations to below Florida Department of Environmental Protection natural attenuation concentrations.

Bloomington Manufactured Gas Plant Site

Bloomington Manufactured Gas Plant Site PDF

Author:

Publisher:

Published: 2021

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

This Amendment to the Illinois Environmental Protection Agency (Illinois EPA) approved Groundwater Remediation Objectives Report (Groundwater ROR) (Burns & McDonnell Engineering Company, Inc. [BMcD] 2017) presents completed and planned remedial action activities on the Bloomington manufactured gas plant (MGP) site and surrounding properties (study area), evaluates post-remediation soil and groundwater conditions, and presents an updated evaluation of the extent of constituents of concern (COCs) for the groundwater ingestion route.

Natural Attenuation for Groundwater Remediation

Natural Attenuation for Groundwater Remediation PDF

Author: Commission on Geosciences, Environment, and Resources

Publisher: National Academies Press

Published: 2000-08-31

Total Pages: 289

ISBN-13: 0309069327

DOWNLOAD EBOOK →

In the past decade, officials responsible for clean-up of contaminated groundwater have increasingly turned to natural attenuation-essentially allowing naturally occurring processes to reduce the toxic potential of contaminants-versus engineered solutions. This saves both money and headaches. To the people in surrounding communities, though, it can appear that clean-up officials are simply walking away from contaminated sites. When is natural attenuation the appropriate approach to a clean-up? This book presents the consensus of a diverse committee, informed by the views of researchers, regulators, and community activists. The committee reviews the likely effectiveness of natural attenuation with different classes of contaminants-and describes how to evaluate the "footprints" of natural attenuation at a site to determine whether natural processes will provide adequate clean-up. Included are recommendations for regulatory change. The committee emphasizes the importance of the public's belief and attitudes toward remediation and provides guidance on involving community stakeholders throughout the clean-up process. The book explores how contamination occurs, explaining concepts and terms, and includes case studies from the Hanford nuclear site, military bases, as well as other sites. It provides historical background and important data on clean-up processes and goes on to offer critical reviews of 14 published protocols for evaluating natural attenuation.

Alternatives for Managing the Nation's Complex Contaminated Groundwater Sites

Alternatives for Managing the Nation's Complex Contaminated Groundwater Sites PDF

Author: National Research Council

Publisher: National Academies Press

Published: 2013-02-27

Total Pages: 423

ISBN-13: 0309278139

DOWNLOAD EBOOK →

Across the United States, thousands of hazardous waste sites are contaminated with chemicals that prevent the underlying groundwater from meeting drinking water standards. These include Superfund sites and other facilities that handle and dispose of hazardous waste, active and inactive dry cleaners, and leaking underground storage tanks; many are at federal facilities such as military installations. While many sites have been closed over the past 30 years through cleanup programs run by the U.S. Department of Defense, the U.S. EPA, and other state and federal agencies, the remaining caseload is much more difficult to address because the nature of the contamination and subsurface conditions make it difficult to achieve drinking water standards in the affected groundwater. Alternatives for Managing the Nation's Complex Contaminated Groundwater Sites estimates that at least 126,000 sites across the U.S. still have contaminated groundwater, and their closure is expected to cost at least $110 billion to $127 billion. About 10 percent of these sites are considered "complex," meaning restoration is unlikely to be achieved in the next 50 to 100 years due to technological limitations. At sites where contaminant concentrations have plateaued at levels above cleanup goals despite active efforts, the report recommends evaluating whether the sites should transition to long-term management, where risks would be monitored and harmful exposures prevented, but at reduced costs.