Nanoparticle Engineering for Chemical-Mechanical Planarization

Nanoparticle Engineering for Chemical-Mechanical Planarization PDF

Author: Ungyu Paik

Publisher: CRC Press

Published: 2019-04-15

Total Pages: 222

ISBN-13: 1000023222

DOWNLOAD EBOOK →

In the development of next-generation nanoscale devices, higher speed and lower power operation is the name of the game. Increasing reliance on mobile computers, mobile phone, and other electronic devices demands a greater degree of speed and power. As chemical mechanical planarization (CMP) progressively becomes perceived less as black art and more as a cutting-edge technology, it is emerging as the technology for achieving higher performance devices. Nanoparticle Engineering for Chemical-Mechanical Planarization explains the physicochemical properties of nanoparticles according to each step in the CMP process, including dielectric CMP, shallow trend isolation CMP, metal CMP, poly isolation CMP, and noble metal CMP. The authors provide a detailed guide to nanoparticle engineering of novel CMP slurry for next-generation nanoscale devices below the 60nm design rule. They present design techniques using polymeric additives to improve CMP performance. The final chapter focuses on novel CMP slurry for the application to memory devices beyond 50nm technology. Most books published on CMP focus on the polishing process, equipment, and cleaning. Even though some of these books may touch on CMP slurries, the methods they cover are confined to conventional slurries and none cover them with the detail required for the development of next-generation devices. With its coverage of fundamental concepts and novel technologies, this book delivers expert insight into CMP for all current and next-generation systems.

Nanoparticle Engineering for Chemical-Mechanical Planarization

Nanoparticle Engineering for Chemical-Mechanical Planarization PDF

Author: Ungyu Paik

Publisher: CRC Press

Published: 2019-04-15

Total Pages: 203

ISBN-13: 1000023362

DOWNLOAD EBOOK →

In the development of next-generation nanoscale devices, higher speed and lower power operation is the name of the game. Increasing reliance on mobile computers, mobile phone, and other electronic devices demands a greater degree of speed and power. As chemical mechanical planarization (CMP) progressively becomes perceived less as black art and more as a cutting-edge technology, it is emerging as the technology for achieving higher performance devices. Nanoparticle Engineering for Chemical-Mechanical Planarization explains the physicochemical properties of nanoparticles according to each step in the CMP process, including dielectric CMP, shallow trend isolation CMP, metal CMP, poly isolation CMP, and noble metal CMP. The authors provide a detailed guide to nanoparticle engineering of novel CMP slurry for next-generation nanoscale devices below the 60nm design rule. They present design techniques using polymeric additives to improve CMP performance. The final chapter focuses on novel CMP slurry for the application to memory devices beyond 50nm technology. Most books published on CMP focus on the polishing process, equipment, and cleaning. Even though some of these books may touch on CMP slurries, the methods they cover are confined to conventional slurries and none cover them with the detail required for the development of next-generation devices. With its coverage of fundamental concepts and novel technologies, this book delivers expert insight into CMP for all current and next-generation systems.

Global Roadmap for Ceramic and Glass Technology

Global Roadmap for Ceramic and Glass Technology PDF

Author: Stephen W. Freiman

Publisher: John Wiley & Sons

Published: 2007-06-29

Total Pages: 964

ISBN-13: 0470104910

DOWNLOAD EBOOK →

This is the only global roadmap that identifies the technical and manufacturing challenges associated with the development and expansion of commercial markets for ceramics and glass. Featuring presentations by industry leaders at the 1st International Congress on Ceramics (ICC) held in 2006, it suggests positive, proactive ways to address these challenges. The ICC Global Roadmap contains the following content: 1) Summary papers prepared by the invited speakers before the meeting 2) A detailed account of the presentation of each invited speaker written by an editor who attends the presentation 3) A summary account and future recommendations for the industry on each topic covered written by the board and the president of this meeting, Dr. Stephen Freiman (National Institutes of Standards and Technology) 4) The CDRom accompanying the book contains all of the above as well as pdfs of the presentations for non-invited speakers, including posters presented and discussed.

Advances in Chemical Mechanical Planarization (CMP)

Advances in Chemical Mechanical Planarization (CMP) PDF

Author: Babu Suryadevara

Publisher: Woodhead Publishing

Published: 2021-09-10

Total Pages: 650

ISBN-13: 0128218193

DOWNLOAD EBOOK →

Advances in Chemical Mechanical Planarization (CMP), Second Edition provides the latest information on a mainstream process that is critical for high-volume, high-yield semiconductor manufacturing, and even more so as device dimensions continue to shrink. The second edition includes the recent advances of CMP and its emerging materials, methods, and applications, including coverage of post-CMP cleaning challenges and tribology of CMP. This important book offers a systematic review of fundamentals and advances in the area. Part one covers CMP of dielectric and metal films, with chapters focusing on the use of current and emerging techniques and processes and on CMP of various materials, including ultra low-k materials and high-mobility channel materials, and ending with a chapter reviewing the environmental impacts of CMP processes. New content addressed includes CMP challenges with tungsten, cobalt, and ruthenium as interconnect and barrier films, consumables for ultralow topography and CMP for memory devices. Part two addresses consumables and process control for improved CMP and includes chapters on CMP pads, diamond disc pad conditioning, the use of FTIR spectroscopy for characterization of surface processes and approaches for defection characterization, mitigation, and reduction. Advances in Chemical Mechanical Planarization (CMP), Second Edition is an invaluable resource and key reference for materials scientists and engineers in academia and R&D. Reviews the most relevant techniques and processes for CMP of dielectric and metal films Includes chapters devoted to CMP for current and emerging materials Addresses consumables and process control for improved CMP, including post-CMP

Effects of Slurry Chemistry on the Rate of Agglomeration of Alumina Nanoparticles for Chemical Mechanical Planarization

Effects of Slurry Chemistry on the Rate of Agglomeration of Alumina Nanoparticles for Chemical Mechanical Planarization PDF

Author: Neil Anjan Brahma

Publisher:

Published: 2013

Total Pages: 149

ISBN-13: 9781303001185

DOWNLOAD EBOOK →

Chemical mechanical planarization (CMP) is a polishing process used during the manufacture of microelectronic integrated circuits. During fabrication of multilevel circuitry, excess deposited material must be removed and the wafer surface globally planarized for proper function of devices. This is especially necessary with copper interconnects, thus, copper CMP was the focus of this study. CMP requires the use of a slurry containing nanometer-sized abrasive particles along with a variety of chemical additives. The particles and chemicals act synergistically to mechanically and chemically remove material and provide a near globally planar surface. For optimal CMP performance, the effective abrasive particle size must be controlled. If particles aggregate, CMP performance may diminish and possibly even cause defective devices. The chemistry of the slurry (pH, ions present, etc) can not only affect the mean aggregate size of the abrasive particles, but also growth of aggregate over time. This research investigated the aggregation behavior of suspensions of 150 nm alumina particles in 1mM KNO3 with various additives (glycine, H2O2, benzotriazole, and sodium dodecyl sulfate) used in CMP of copper through effective particle (agglomerate) size versus time and zeta potential measurements. Aggregate size rate data were analyzed to elucidate the mechanism of aggregation, as well its effect on the structure of the resultant aggregate. The effects of temperature of the slurry were also explored. Finally, particle size distribution data collected at various stages of aggregation were incorporated into the Luo and Dornfeld model of CMP to investigate the dynamic nature of the CMP process.

Nanotechnology Commercialization

Nanotechnology Commercialization PDF

Author: Takuya Tsuzuki

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 470

ISBN-13: 9814303291

DOWNLOAD EBOOK →

In terms of commercialization, nanomaterials occupy a unique place in nanotechnology. Engineered nanomaterials, especially nanoparticulate materials, are the leading sector in nanotechnology commercialization. In addition, the nanomaterial sector has attracted much more heated debate than any other nanotechnology sector with regard to safety, regul

Nanoparticles Removal in Post-CMP (Chemical-Mechanical Polishing) Cleaning

Nanoparticles Removal in Post-CMP (Chemical-Mechanical Polishing) Cleaning PDF

Author: Dedy Ng

Publisher:

Published: 2006

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

Research was performed to study the particle adhesion on the wafer surface after the chemical-mechanical polishing (CMP) process. The embedded particles can be abrasive particles from the slurry, debris from pad material, and particles of film being polished. Different methods of particle removal mechanism were investigated in order to find out the most effective technique. In post-CMP cleaning, surfactant was added in the solution. Results were compared with cleaning without surfactant and showed that cleaning was more effective with the combined interaction of the mechanical effort from the brush sweeping and the chemistry of the surfactant in the solution (i.e., tribochemical interaction). Numerical analysis was also performed to predict the particle removal rate with the addition of surfactants. The van der Waals forces present in the wafer-particle interface were calculated in order to find the energy required to remove the particle. Finally, the adhesion process was studied by modeling the van der Waals force as a function of separation distance between the particle and the surface. The successful adaptation of elasticity theory to nanoparticle-surface interaction brought insight into CMP cleaning mechanisms. The model tells us that it is not always the case that as the separation distance is decreased, the attraction force will be increased. The force value estimated can be used for slurry design and CMP process estimation.

Nanoparticle Technology Handbook

Nanoparticle Technology Handbook PDF

Author: Makio Naito

Publisher: Elsevier

Published: 2018-03-06

Total Pages: 904

ISBN-13: 0444641114

DOWNLOAD EBOOK →

Nanoparticle Technology Handbook, Third Edition, is an updated and expanded authoritative reference providing both the theory behind nanoparticles and the practical applications of nanotechnology. This third edition features twenty new chapters, providing a reference much broader in scope than the previous edition. Over 140 experts in nanotechnology and/or particle technology contributed to this new edition. The book not only includes the theory behind nanoparticles, but also the practical applications of nanotechnology. It examines future possibilities and new innovations and contains important knowledge on nanoparticle characterization and the effect of nanoparticles on the environment and humans. Nanoparticle technology is a new and revolutionary technology, which is increasingly used in electronic devices and nanomaterials. It handles the preparation, processing, application and characterization of nanoparticles and has become the core of nanotechnology as an extension of conventional fine particle/powder technology. Nanoparticle technology plays an important role in the implementation of nanotechnology in many engineering and industrial fields, including electronic devices, advanced ceramics, new batteries, engineered catalysts, functional paint and ink, drug delivery system, biotechnology, etc., making use of the unique properties of nanoparticles, which are completely different from those of bulk materials. Introduces all aspects of nanoparticle technology, from the fundamentals to applications Cover basic information on preparation through to the characterization of nanoparticles in a systematic way Features information on nanostructures, which play an important role in practical applications Includes the effects of nanoparticles on human health and the environment Includes applications of nanoparticles in diverse fields, including applications in new areas, such as electronics cosmetics, etc. Offers up-to-date information given by specialists in each field