Nanomaterials for Direct Alcohol Fuel Cells

Nanomaterials for Direct Alcohol Fuel Cells PDF

Author: Fatih Sen

Publisher: Elsevier

Published: 2021-08-25

Total Pages: 552

ISBN-13: 0128217146

DOWNLOAD EBOOK →

Nanomaterials for Direct Alcohol Fuel Cells explains nanomaterials and nanocomposites as well as the characterization, manufacturing, and design of alcohol fuel cell applications. The advantages of direct alcohol fuel cells (DAFCs) are significant for reliable and long-lasting portable power sources used in devices such as mobile phones and computers. Even though substantial improvements have been made in DAFC systems over the last decade, more effort is needed to commercialize DAFCs by producing durable, low-cost, and smaller-sized devices. Nanomaterials have an important role to play in achieving this aim. The use of nanotechnology in DAFCs is vital due to their role in the synthesis of nanocatalysts within the manufacturing process. Lately, nanocatalysts containing carbon such as graphene, carbon nanotubes, and carbon nanocoils have also attracted much attention. When compared to traditional materials, carbon-based materials have unique advantages, such as high corrosion resistance, better electrical conductivity, and less catalyst poisoning. This book also covers different aspects of nanocomposites fabrication, including their preparation, design, and characterization techniques for their fuel cell applications. This book is an important reference source for materials scientists, engineers, energy scientists, and electrochemists who are seeking to improve their understanding of how nanomaterials are being used to enhance the efficiency and lower the cost of DAFCs. Shows how nanomaterials are being used for the design and manufacture of DAFCs Explores how nanotechnology is being used to enhance the synthesis and catalysis processes to create the next generation of fuel cells Assesses the major challenges of producing nanomaterial-based DAFCs on an industrial scale

Nanomaterials for Alcohol Fuel Cells

Nanomaterials for Alcohol Fuel Cells PDF

Author: Inamuddin

Publisher: Materials Research Forum LLC

Published: 2019-05-25

Total Pages: 398

ISBN-13: 1644900181

DOWNLOAD EBOOK →

Alcohol fuel cells are very attractive as power sources for mobile and portable applications. As they convert the chemical energy of fuels into electricity, much recent research is directed at developing suitable and efficient catalysts for the process. The present book focuses on pertinent types of nanomaterial-based catalysts, membranes and supports.

Nanomaterials for Direct Alcohol Fuel Cell

Nanomaterials for Direct Alcohol Fuel Cell PDF

Author: Yixuan Wang

Publisher: CRC Press

Published: 2016-12-01

Total Pages: 299

ISBN-13: 9814669016

DOWNLOAD EBOOK →

Direct alcohol fuel cells (DAFCs), such as methanol and ethanol ones, are very promising advanced power systems that may considerably reduce dependence on fossil fuels and are, therefore, attracting increased attention worldwide. Nanostructured materials can improve the performance of the cathodes, anodes, and electrolytes of DAFCs. This book focuses on the most recent advances in the science and technology of nanostructured materials for direct alcohol fuel cells, including novel non-noble or low noble metal catalysts deposited on the graphene layer and metal-free doped carbon black for oxygen electroreduction reaction, Sn-based bimetallic and trimetallic nanoparticles for alcohol electro-oxidation reaction, and novel nanomaterials for promoting proton transfer in electrolytes. In addition, the book includes chapters from not only experimentalists but also computational chemists who have worked in the development of advanced power systems for decades. Illustrated throughout with excellent figures, this multidisciplinary work is not just a reference for researchers in chemistry and materials science, but a handy textbook for advanced undergraduate- and graduate-level students in nanoscience- and nanotechnology-related courses, especially those with an interest in developing novel materials for advanced power systems.

Nanomaterials for Fuel Cell Catalysis

Nanomaterials for Fuel Cell Catalysis PDF

Author: Kenneth I. Ozoemena

Publisher: Springer

Published: 2016-07-05

Total Pages: 583

ISBN-13: 3319299301

DOWNLOAD EBOOK →

Global experts provide an authoritative source of information on the use of electrochemical fuel cells, and in particular discuss the use of nanomaterials to enhance the performance of existing energy systems. The book covers the state of the art in the design, preparation, and engineering of nanoscale functional materials as effective catalysts for fuel cell chemistry, highlights recent progress in electrocatalysis at both fuel cell anode and cathode, and details perspectives and challenges in future research.

Nanostructured and Advanced Materials for Fuel Cells

Nanostructured and Advanced Materials for Fuel Cells PDF

Author: San Ping Jiang

Publisher: CRC Press

Published: 2013-12-07

Total Pages: 614

ISBN-13: 1466512504

DOWNLOAD EBOOK →

Boasting chapters written by leading international experts, Nanostructured and Advanced Materials for Fuel Cells provides an overview of the progress that has been made so far in the material and catalyst development for fuel cells. The book covers the most recent developments detailing all aspects of synthesis, characterization, and performance. It offers an overview on the principles, classifications, and types of fuels used in fuel cells, and discusses the critical properties, design, and advances made in various sealing materials. It provides an extensive review on the design, configuration, fabrication, modeling, materials, and stack performance of μ-SOFC technology, and addresses the advancement and challenges in the synthesis, characterization, and fundamental understanding of the catalytic activity of nitrogen-carbon, carbon, and noncarbon-based electro catalysts for PEM fuel cells. The authors explore the atomic layer deposition (ALD) technique, summarize the advancements in the fundamental understanding of the most successful Nafion membranes, and focus on the development of alternative and composite membranes for direct alcohol fuel cells (DAFCs). They also review current challenges and consider future development in the industry. Includes 17 chapters, 262 figures, and close to 2000 references Provides an extensive review of the carbon, nitrogen-carbon, and noncarbon-based electro catalysts for fuel cells Presents an update on the latest materials development in conventional fuel cells and emerging fuel cells This text is a single-source reference on the latest advances in the nano-structured materials and electro catalysts for fuel cells, the most efficient and emerging energy conversion technologies for the twenty-first century. It serves as a valuable resource for students, materials engineers, and researchers interested in fuel cell technology.

Noble Metal Based Nanomaterials in the Application of Direct Alcohol Fuel Cells

Noble Metal Based Nanomaterials in the Application of Direct Alcohol Fuel Cells PDF

Author: Liang Su

Publisher:

Published: 2013

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

Fuel cells are envisaged to be a new generation of power sources which convert chemical energy into electrical energy with, theoretically, both economical and environmental benefit. As a subcategory of polymer electrolyte membrane fuel cells, direct alcohol fuel cells exhibit the most pertinent properties in the application of portable electronic devices. As the most important and the most expensive component in DAFCs, electrocatalysts have attracted considerable academic and industrial attention. One of the en route research on fuel cells aims to develop nanomaterials with better catalytic performance and lower cost. Proceeding towards this goal, this dissertation will be focusing on the study of the cathode and the anode catalysts in DAFCs. Specifically, as anode catalysts, novel palladium based, 1-dimensional, membrane electrodes were fabricated via a facile and versatile electrospinning – electroless plating procedure. Nanofibrous polyamide 6 and titanium dioxide were prepared by electrospinning, serving as the template for the subsequent electroless plating of Pd. The as-prepared, free-standing Pd nanofibers were applied in the electrocatalysis of ethanol oxidation reaction and glycerol oxidation reaction in alkaline medium. Beyond the examination of the activity of the catalysts, the mechanisms of EOR and GOR on Pd in alkaline electrolyte were also studied. In the context of cathode catalysts, platinum-copper alloy nanotubes were synthesized by galvanic replacement reaction using high-quality Cu nanowires as the sacrificial template. This rationally designed electrocatalyst for oxygen reduction reaction inherited the advantage of improved catalytic activity from the incorporation of a second transition metal and ameliorated durability from the 1-dimensional structure, which were verified by rotating disk electrode experiment and accelerated durability test, respectively. In addition, the fabrication of Pt based, free-standing catalyst on a conductive substrate, such as single-walled carbon nanotubes and polyaniline, was also investigated using electrodeposition technique. The applicability of the as-prepared Pt/SWCNTs composite as a free-standing electrocatalyst for ORR was also demonstrated. In summary, the developed methods for the fabrication of free-standing membrane electrodes and rationally designed nanomaterials combining several favorable properties will open up new avenues in the preparation of noble metal based nanomaterials and can be potentially extended to the synthesis of a wider range of electrocatalysts in the application of DAFCs.

Nanocatalysts

Nanocatalysts PDF

Author: Indrajit Sinha

Publisher: BoD – Books on Demand

Published: 2019-07-31

Total Pages: 170

ISBN-13: 1789841593

DOWNLOAD EBOOK →

Nanocatalysis is a topical area of research that has huge potential. It attempts to merge the advantages of heterogeneous and homogeneous catalysis. The collection of articles in this book treats the topics of specificity, activity, reusability, and stability of the catalyst and presents a compilation of articles that focuses on different aspects of these issues.

Nanomaterials for Direct Alcohol Fuel Cell

Nanomaterials for Direct Alcohol Fuel Cell PDF

Author: Yixuan Wang

Publisher: CRC Press

Published: 2016-12-01

Total Pages: 270

ISBN-13: 1315341255

DOWNLOAD EBOOK →

Direct alcohol fuel cells (DAFCs), such as methanol and ethanol ones, are very promising advanced power systems that may considerably reduce dependence on fossil fuels and are, therefore, attracting increased attention worldwide. Nanostructured materials can improve the performance of the cathodes, anodes, and electrolytes of DAFCs. This book focuses on the most recent advances in the science and technology of nanostructured materials for direct alcohol fuel cells, including novel non-noble or low noble metal catalysts deposited on the graphene layer and metal-free doped carbon black for oxygen electroreduction reaction, Sn-based bimetallic and trimetallic nanoparticles for alcohol electro-oxidation reaction, and novel nanomaterials for promoting proton transfer in electrolytes. In addition, the book includes chapters from not only experimentalists but also computational chemists who have worked in the development of advanced power systems for decades. Illustrated throughout with excellent figures, this multidisciplinary work is not just a reference for researchers in chemistry and materials science, but a handy textbook for advanced undergraduate- and graduate-level students in nanoscience- and nanotechnology-related courses, especially those with an interest in developing novel materials for advanced power systems.

Direct Liquid Fuel Cells

Direct Liquid Fuel Cells PDF

Author: Ramiz Gültekin Akay

Publisher: Academic Press

Published: 2020-09-28

Total Pages: 328

ISBN-13: 0128186240

DOWNLOAD EBOOK →

Direct Liquid Fuel Cells is a comprehensive overview of the fundamentals and specificities of the use of methanol, ethanol, glycerol, formic acid and formate, dimethyl ether, borohydride, hydrazine and other promising liquid fuels in fuel cells. Each chapter covers a different liquid fuel-based fuel cell such as: Anode catalysts of direct methanol fuel cells (DMFCs), future system designs and future trends for direct ethanol fuel cells (DEFCs), development of catalysts for direct glycerol fuel cells (DGFCs), the mechanisms of the reactions taking place at the anode and cathode electrodes, and the reported anode catalysts for direct formic acid fuel cell (DFAFC) and direct formate fuel cell (DFFC), characteristics of direct dimethyl ether fuel cell (DDMEFC), including its electrochemical and operating systems and design, the developments in direct borohydride fuel cells, the development of catalysts for direct hydrazine fuel cells (DHFCs), and also the uncommonly used liquids that have a potential for fuel cell applications including 2-propanol, ethylene glycol, ascorbic acid and ascorbate studied in the literature as well as utilization of some blended fuels. In each part, the most recent literature is reviewed and the state of the art is presented. It also includes examples of practical problems with solutions and a summarized comparison of performance, advantages, and limitations of each type of fuel cell discussed. Direct Liquid Fuel Cells is not a typical textbook but rather designed as a reference book of which any level of students (undergraduate or graduate), instructors, field specialists, industry and general audience, who benefit from current and complete understanding of the many aspects involved in the development and operation of these types of fuel cells, could make use of any chapter when necessary. Presents information on different types of direct liquid fuel cells. Explores information under each section, for specific fuel-based fuel cells in more detail in terms of the materials used. Covers three main sections: direct alcohol, organic fuel-based and inorganic fuel-based fuel cells