Multiscale and Multiresolution Methods

Multiscale and Multiresolution Methods PDF

Author: Timothy J. Barth

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 396

ISBN-13: 3642562051

DOWNLOAD EBOOK →

Many computionally challenging problems omnipresent in science and engineering exhibit multiscale phenomena so that the task of computing or even representing all scales of action is computationally very expensive unless the multiscale nature of these problems is exploited in a fundamental way. Some diverse examples of practical interest include the computation of fluid turbulence, structural analysis of composite materials, terabyte data mining, image processing, and a multitude of others. This book consists of both invited and contributed articles which address many facets of efficient multiscale representation and scientific computation from varied viewpoints such as hierarchical data representations, multilevel algorithms, algebraic homogeni- zation, and others. This book should be of particular interest to readers interested in recent and emerging trends in multiscale and multiresolution computation with application to a wide range of practical problems.

Multiscale and Multiresolution Approaches in Turbulence

Multiscale and Multiresolution Approaches in Turbulence PDF

Author: Pierre Sagaut

Publisher: World Scientific

Published: 2013

Total Pages: 446

ISBN-13: 1848169876

DOWNLOAD EBOOK →

The book aims to provide the reader with an updated general presentation of multiscale/multiresolution approaches in turbulent flow simulations. All modern approaches (LES, hybrid RANS/LES, DES, SAS) are discussed and recast in a global comprehensive framework. Both theoretical features and practical implementation details are addressed. Some full scale applications are described, to provide the reader with relevant guidelines to facilitate a future use of these methods.

Multiscale And Multiresolution Approaches In Turbulence - Les, Des And Hybrid Rans/les Methods: Applications And Guidelines (2nd Edition)

Multiscale And Multiresolution Approaches In Turbulence - Les, Des And Hybrid Rans/les Methods: Applications And Guidelines (2nd Edition) PDF

Author: Pierre Sagaut

Publisher: World Scientific

Published: 2013-03-25

Total Pages: 446

ISBN-13: 1848169884

DOWNLOAD EBOOK →

The book aims to provide the reader with an updated general presentation of multiscale/multiresolution approaches in turbulent flow simulations. All modern approaches (LES, hybrid RANS/LES, DES, SAS) are discussed and recast in a global comprehensive framework. Both theoretical features and practical implementation details are addressed. Some full scale applications are described, to provide the reader with relevant guidelines to facilitate a future use of these methods./a

Multiresolution Methods in Scattered Data Modelling

Multiresolution Methods in Scattered Data Modelling PDF

Author: Armin Iske

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 195

ISBN-13: 3642187544

DOWNLOAD EBOOK →

This application-oriented work concerns the design of efficient, robust and reliable algorithms for the numerical simulation of multiscale phenomena. To this end, various modern techniques from scattered data modelling, such as splines over triangulations and radial basis functions, are combined with customized adaptive strategies, which are developed individually in this work. The resulting multiresolution methods include thinning algorithms, multi levelapproximation schemes, and meshfree discretizations for transport equa tions. The utility of the proposed computational methods is supported by their wide range of applications, such as image compression, hierarchical sur face visualization, and multiscale flow simulation. Special emphasis is placed on comparisons between the various numerical algorithms developed in this work and comparable state-of-the-art methods. To this end, extensive numerical examples, mainly arising from real-world applications, are provided. This research monograph is arranged in six chapters: 1. Introduction; 2. Algorithms and Data Structures; 3. Radial Basis Functions; 4. Thinning Algorithms; 5. Multilevel Approximation Schemes; 6. Meshfree Methods for Transport Equations. Chapter 1 provides a preliminary discussion on basic concepts, tools and principles of multiresolution methods, scattered data modelling, multilevel methods and adaptive irregular sampling. Relevant algorithms and data structures, such as triangulation methods, heaps, and quadtrees, are then introduced in Chapter 2.

Principles of Multiscale Modeling

Principles of Multiscale Modeling PDF

Author: Weinan E

Publisher: Cambridge University Press

Published: 2011-07-07

Total Pages: 485

ISBN-13: 1107096545

DOWNLOAD EBOOK →

A systematic discussion of the fundamental principles, written by a leading contributor to the field.

Multiscale Modeling

Multiscale Modeling PDF

Author: Marco A.R. Ferreira

Publisher: Springer Science & Business Media

Published: 2007-07-17

Total Pages: 243

ISBN-13: 0387708987

DOWNLOAD EBOOK →

This highly useful book contains methodology for the analysis of data that arise from multiscale processes. It brings together a number of recent developments and makes them accessible to a wider audience. Taking a Bayesian approach allows for full accounting of uncertainty, and also addresses the delicate issue of uncertainty at multiple scales. These methods can handle different amounts of prior knowledge at different scales, as often occurs in practice.

Multiscale Methods

Multiscale Methods PDF

Author: Jacob Fish

Publisher: Oxford University Press

Published: 2010

Total Pages: 631

ISBN-13: 0199233853

DOWNLOAD EBOOK →

Small scale features and processes occurring at nanometer and femtosecond scales have a profound impact on what happens at a larger scale and over an extensive period of time. The primary objective of this volume is to reflect the state-of-the-art in multiscale mathematics, modeling, and simulations and to address the following barriers: What is the information that needs to be transferred from one model or scale to another and what physical principles must be satisfied during thetransfer of information? What are the optimal ways to achieve such transfer of information? How can variability of physical parameters at multiple scales be quantified and how can it be accounted for to ensure design robustness?The multiscale approaches in space and time presented in this volume are grouped into two main categories: information-passing and concurrent. In the concurrent approaches various scales are simultaneously resolved, whereas in the information-passing methods the fine scale is modeled and its gross response is infused into the continuum scale. The issue of reliability of multiscale modeling and simulation tools which focus on a hierarchy of multiscale models and an a posteriori model of errorestimation including uncertainty quantification, is discussed in several chapters. Component software that can be effectively combined to address a wide range of multiscale simulations is also described. Applications range from advanced materials to nanoelectromechanical systems (NEMS), biologicalsystems, and nanoporous catalysts where physical phenomena operates across 12 orders of magnitude in time scales and 10 orders of magnitude in spatial scales.This volume is a valuable reference book for scientists, engineers and graduate students practicing in traditional engineering and science disciplines as well as in emerging fields of nanotechnology, biotechnology, microelectronics and energy.

Image Processing and Data Analysis

Image Processing and Data Analysis PDF

Author: Jean-Luc Starck

Publisher: Cambridge University Press

Published: 1998

Total Pages: 301

ISBN-13: 0521599148

DOWNLOAD EBOOK →

Powerful techniques have been developed in recent years for the analysis of digital data, especially the manipulation of images. This book provides an in-depth introduction to a range of these innovative, avante-garde data-processing techniques. It develops the reader's understanding of each technique and then shows with practical examples how they can be applied to improve the skills of graduate students and researchers in astronomy, electrical engineering, physics, geophysics and medical imaging. What sets this book apart from others on the subject is the complementary blend of theory and practical application. Throughout, it is copiously illustrated with real-world examples from astronomy, electrical engineering, remote sensing and medicine. It also shows how many, more traditional, methods can be enhanced by incorporating the new wavelet and multiscale methods into the processing. For graduate students and researchers already experienced in image processing and data analysis, this book provides an indispensable guide to a wide range of exciting and original data-analysis techniques.