Multiple Diffraction of X-Rays in Crystals

Multiple Diffraction of X-Rays in Crystals PDF

Author: Shih-Lin In-Hang

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 312

ISBN-13: 3642821669

DOWNLOAD EBOOK →

The three-dimensional arrangement of atoms and molecules in crystals and the comparable magnitude of x-ray wavelengths and interatomic distances make it possible for crystals to have more than one set of atomic planes that satisfy Bragg's law and simultaneously diffract an incident x-ray beam - this is the so-called multiple diffraction. This type of diffraction should, in prin ciple, reflect three-dimensional information about the structure of the dif fracting material. Recent progress in understanding this diffraction phenome non and in utilizing this diffraction technique in solid-state and materials sciences reveals the diversity as well as the importance of multiple diffraction of x-rays in application. Unfortunately, there has been no single book written that gives a sys tematic review of this type of diffraction, encompasses its diverse applica tions, and foresees future trends gf development. It is for this purpose that this book is designed. It is hoped that its appearance may possibly turn more attention of condensed-matter physicists, chemists and material scientists toward this particular phenomenon, and that new methods of non-destructive analysis of matter using this diffraction technique may be developed in the future.

Multiple Diffraction of X-Rays in Crystals

Multiple Diffraction of X-Rays in Crystals PDF

Author: Chung In-Hang

Publisher: Springer

Published: 2012-02-12

Total Pages: 300

ISBN-13: 9783642821677

DOWNLOAD EBOOK →

The three-dimensional arrangement of atoms and molecules in crystals and the comparable magnitude of x-ray wavelengths and interatomic distances make it possible for crystals to have more than one set of atomic planes that satisfy Bragg's law and simultaneously diffract an incident x-ray beam - this is the so-called multiple diffraction. This type of diffraction should, in prin ciple, reflect three-dimensional information about the structure of the dif fracting material. Recent progress in understanding this diffraction phenome non and in utilizing this diffraction technique in solid-state and materials sciences reveals the diversity as well as the importance of multiple diffraction of x-rays in application. Unfortunately, there has been no single book written that gives a sys tematic review of this type of diffraction, encompasses its diverse applica tions, and foresees future trends gf development. It is for this purpose that this book is designed. It is hoped that its appearance may possibly turn more attention of condensed-matter physicists, chemists and material scientists toward this particular phenomenon, and that new methods of non-destructive analysis of matter using this diffraction technique may be developed in the future.

Multiple Diffraction of X-Rays in Crystals

Multiple Diffraction of X-Rays in Crystals PDF

Author: Chung In-Hang

Publisher: Springer

Published: 1984-12-01

Total Pages: 300

ISBN-13: 9783540129554

DOWNLOAD EBOOK →

The three-dimensional arrangement of atoms and molecules in crystals and the comparable magnitude of x-ray wavelengths and interatomic distances make it possible for crystals to have more than one set of atomic planes that satisfy Bragg's law and simultaneously diffract an incident x-ray beam - this is the so-called multiple diffraction. This type of diffraction should, in prin ciple, reflect three-dimensional information about the structure of the dif fracting material. Recent progress in understanding this diffraction phenome non and in utilizing this diffraction technique in solid-state and materials sciences reveals the diversity as well as the importance of multiple diffraction of x-rays in application. Unfortunately, there has been no single book written that gives a sys tematic review of this type of diffraction, encompasses its diverse applica tions, and foresees future trends gf development. It is for this purpose that this book is designed. It is hoped that its appearance may possibly turn more attention of condensed-matter physicists, chemists and material scientists toward this particular phenomenon, and that new methods of non-destructive analysis of matter using this diffraction technique may be developed in the future.

X-Ray Multiple-Wave Diffraction

X-Ray Multiple-Wave Diffraction PDF

Author: Shih-Lin Chang

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 443

ISBN-13: 3662109840

DOWNLOAD EBOOK →

X-ray multiple-wave diffraction, sometimes called multiple diffraction or N-beam diffraction, results from the scattering of X-rays from periodic two or higher-dimensional structures, like 2-d and 3-d crystals and even quasi crystals. The interaction of the X-rays with the periodic arrangement of atoms usually provides structural information about the scatterer. Unlike the usual Bragg reflection, the so-called two-wave diffraction, the multiply diffracted intensities are sensitive to the phases of the structure factors in volved. This gives X-ray multiple-wave diffraction the chance to solve the X-ray phase problem. On the other hand, the condition for generating an X ray multiple-wave diffraction is much more strict than in two-wave cases. This makes X-ray multiple-wave diffraction a useful technique for precise measure ments of crystal lattice constants and the wavelength of radiation sources. Recent progress in the application of this particular diffraction technique to surfaces, thin films, and less ordered systems has demonstrated the diver sity and practicability of the technique for structural research in condensed matter physics, materials sciences, crystallography, and X-ray optics. The first book on this subject, Multiple Diffraction of X-Rays in Crystals, was published in 1984, and intended to give a contemporary review on the fundamental and application aspects of this diffraction.

X-Ray Diffraction

X-Ray Diffraction PDF

Author: A. Guinier

Publisher: Courier Corporation

Published: 2013-01-17

Total Pages: 404

ISBN-13: 0486141349

DOWNLOAD EBOOK →

Exploration of fundamentals of x-ray diffraction theory using Fourier transforms applies general results to various atomic structures, amorphous bodies, crystals, and imperfect crystals. 154 illustrations. 1963 edition.

University Physics

University Physics PDF

Author: OpenStax

Publisher:

Published: 2016-11-04

Total Pages: 622

ISBN-13: 9781680920451

DOWNLOAD EBOOK →

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.

X-Ray and Neutron Diffraction in Nonideal Crystals

X-Ray and Neutron Diffraction in Nonideal Crystals PDF

Author: Mikhail A. Krivoglaz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 483

ISBN-13: 3642742912

DOWNLOAD EBOOK →

Mikhail Alexandrovich Krivoglaz died unexpectedly when he was preparing the English edition of his two-volume monograph on diffraction and diffuse scatter ing of X-rays and neutrons in imperfect crystals. His death was a heavy blow to all who knew him, who had worked with him and to the world science community as a whole. The application of the diffraction techniques for the study of imperfections of crystal structures was the major field of Krivoglaz' work throughout his career in science. He started working in the field in the mid-fifties and since then made fundamental contributions to the theory of real crystals. His results have largely determined the current level of knowledge in this field for more than thirty years. Until the very last days of his life, Krivoglaz continued active studies in the physics of diffraction effects in real crystals. His interest in the theory aided in the explanation of the rapidly advancing experimental studies. The milestones marking important stages of his work were the first mono graph on the theory of X-ray and neutron scattering in real crystals which was published in Russian in 1967 (a revised English edition in 1969), and the two volume monograph published in Russian in 1983-84 (this edition is the revised translation of the latter).

X-Ray and Neutron Diffraction

X-Ray and Neutron Diffraction PDF

Author: G. E. Bacon

Publisher: Elsevier

Published: 2013-09-03

Total Pages: 393

ISBN-13: 1483158292

DOWNLOAD EBOOK →

X-Ray and Neutron Diffraction describes the developments of the X-ray and the various research done in neutron diffraction. Part I of the book concerns the principles and applications of the X-ray and neutrons through their origins from classical crystallography. The book explains the use of diffraction methods to show the highly regular arrangement of atoms that forms a continuous pattern in three-dimensional space. The text evaluates the limitations and benefits of using the different types of radiation sources, whether these are X-rays, neutrons, or electrons. Part II is a collection of reprints discussing the development of techniques that includes a modification of the Bragg method, which is a method of X-ray crystal analysis. One paper presents an improved numerical method of two-dimensional Fourier synthesis for crystals. This method uses a greatly reduced process of arrangement of sets of figures found in the two-dimensional Fourier series. The book also notes the theoretical considerations and the practical details, and then addresses precautions against possible inclusions of errors in this method. The text deals as well with the magnetic scattering of neutrons, and one paper presents a simple method of gathering information about the magnetic moment of the neutron besides the traditional Stern-Gerlach method. Nuclear scientists and physicists, atomic researchers, and nuclear engineers will greatly appreciate the book.