Multi-Scale Modeling of Structural Concrete

Multi-Scale Modeling of Structural Concrete PDF

Author: Koichi Maekawa

Publisher: CRC Press

Published: 2008-11-28

Total Pages: 670

ISBN-13: 0203927206

DOWNLOAD EBOOK →

Increases in computer power have now enabled engineers to combine materials science with structural mechanics in the design and the assessment of concrete structures. The techniques developed have become especially useful for the performance assessment of such structures under coupled mechanistic and environmental actions. This allows effective management of infrastructure over a much longer life cycle, thus satisfying the requirements for durability and sustainability. This ground-breaking new book draws on the fields of materials and structural mechanics in an integrated way to address the questions of management and maintenance. It proposes a realistic way of simulating both constituent materials and structural responses under external loading and under ambient conditions. Where the research literature discusses component or element technology related to performance assessment, this book uniquely covers the subject at the level of the whole system including soil foundation, showing engineers how to model changes in concrete structures over time and how to use this for decision making in infrastructure maintenance and asset management.

Steel Corrosion in Concrete

Steel Corrosion in Concrete PDF

Author: Arnon Bentur

Publisher: CRC Press

Published: 1997-10-09

Total Pages: 214

ISBN-13: 9780419225300

DOWNLOAD EBOOK →

Poor durability of concrete is a major cause of problems in modern building and civil engineering structures in all countries: the annual cost of investigating and repairing deteriorating reinforced concrete structures runs into many millions of pounds. This book explains the fundamentals of the corrosion of steel in concrete. It is comprehensive and provides a basis for the practising engineer to design concrete structures which avoid the problem using modern concepts and specifications. A limited discussion of corrosion measurement and repairs is also provided.

Concrete Fracture

Concrete Fracture PDF

Author: Jan G.M. van Mier

Publisher: CRC Press

Published: 2012-10-25

Total Pages: 383

ISBN-13: 1466554703

DOWNLOAD EBOOK →

The study of fracture mechanics of concrete has developed in recent years to the point where it can be used for assessing the durability of concrete structures and for the development of new concrete materials. The last decade has seen a gradual shift of interest toward fracture studies at increasingly smaller sizes and scales. Concrete Fracture: A Multiscale Approach explores fracture properties of cement and concrete based on their actual material structure. Concrete is a complex hierarchical material, containing material structural elements spanning scales from the nano- to micro- and meso-level. Therefore, multi-scale approaches are essential for a better understanding of mechanical properties and fracture in particular. This volume includes various examples of fracture analyses at the micro- and meso-level. The book presents models accompanied by reliable experiments and explains how these experiments are performed. It also provides numerous examples of test methods and requirements for evaluating quasi-brittle materials. More importantly, it proposes a new modeling approach based on multiscale interaction potential and examines the related experimental challenges facing research engineers and building professionals. The book’s comprehensive coverage is poised to encourage new initiatives for overcoming the difficulties encountered when performing fracture experiments on cement at the micro-size/scale and smaller. The author demonstrates how the obtained results can fit into the larger picture of the material science of concrete—particularly the design of new high-performance concrete materials which can be put to good use in the development of efficient and durable structures.

Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics

Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics PDF

Author: Francois Nicot

Publisher: Elsevier

Published: 2017-11-20

Total Pages: 386

ISBN-13: 0081025963

DOWNLOAD EBOOK →

Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics reunites some of the most recent work from the French research group MeGe GDR (National Research Group on Multiscale and Multiphysics Couplings in Geo-Environmental Mechanics) on the theme of multi-scale and multi-physics modeling of geomaterials, with a special focus on micromechanical aspects. Its offers readers a glimpse into the current state of scientific knowledge in the field, together with the most up-to-date tools and methods of analysis available. Each chapter represents a study with a different viewpoint, alternating between phenomenological/micro-mechanically enriched and purely micromechanical approaches. Throughout the book, contributing authors will highlight advances in geomaterials modeling, while also pointing out practical implications for engineers. Topics discussed include multi-scale modeling of cohesive-less geomaterials, including multi-physical processes, but also the effects of particle breakage, large deformations on the response of the material at the specimen scale and concrete materials, together with clays as cohesive geomaterials. The book concludes by looking at some engineering problems involving larger scales. Identifies contributions in the field of geomechanics Focuses on multi-scale linkages at small scales Presents numerical simulations by discrete elements and tools of homogenization or change of scale

The Alkali-Silica Reaction in Concrete

The Alkali-Silica Reaction in Concrete PDF

Author: R N Swamy

Publisher: CRC Press

Published: 1991-09-01

Total Pages: 288

ISBN-13: 0203036638

DOWNLOAD EBOOK →

This book reviews the fundamental causes and spectrum effects of ASR. It considers he advances that have been made in our understanding of this problem throughout the world.

Computational Structural Engineering

Computational Structural Engineering PDF

Author: Yong Yuan

Publisher: Springer Science & Business Media

Published: 2009-06-05

Total Pages: 1244

ISBN-13: 9048128226

DOWNLOAD EBOOK →

Following the great progress made in computing technology, both in computer and programming technology, computation has become one of the most powerful tools for researchers and practicing engineers. It has led to tremendous achievements in computer-based structural engineering and there is evidence that current devel- ments will even accelerate in the near future. To acknowledge this trend, Tongji University, Vienna University of Technology, and Chinese Academy of Engine- ing, co-organized the International Symposium on Computational Structural En- neering 2009 in Shanghai (CSE’09). CSE’09 aimed at providing a forum for presentation and discussion of sta- of-the-art development in scientific computing applied to engineering sciences. Emphasis was given to basic methodologies, scientific development and engine- ing applications. Therefore, it became a central academic activity of the Inter- tional Association for Computational Mechanics (IACM), the European Com- nity on Computational Methods in Applied Sciences (ECCOMAS), The Chinese Society of Theoretical and Applied Mechanic, the China Civil Engineering So- ety, and the Architectural Society of China. A total of 10 invited papers, and around 140 contributed papers were p- sented in the proceedings of the symposium. Contributors of papers came from 20 countries around the world and covered a wide spectrum related to the compu- tional structural engineering.

Fibre Reinforced Cementitious Composites

Fibre Reinforced Cementitious Composites PDF

Author: Arnon Bentur

Publisher: CRC Press

Published: 2006-11-16

Total Pages: 624

ISBN-13: 1482267748

DOWNLOAD EBOOK →

Advanced cementitious composites can be designed to have outstanding combinations of strength (five to ten times that of conventional concrete) and energy absorption capacity (up to 1000 times that of plain concrete). This second edition brings together in one volume the latest research developments in this rapidly expanding area. The book is split

Physical Models

Physical Models PDF

Author: Bill Addis

Publisher: John Wiley & Sons

Published: 2020-11-02

Total Pages: 70

ISBN-13: 3433032572

DOWNLOAD EBOOK →

Physical models have been, and continue to be used by engineers when faced with unprecedented challenges, when engineering science has been non-existent or inadequate, and in any other situation when the engineer has needed to raise their confidence in a design proposal to a sufficient level to begin construction. For this reason, models have mostly been used by designers and constructors of highly innovative projects, when previous experience has not been available. The book covers the history of using of physical models in the design and development of civil and building engineering projects including bridges in the mid-18th century, William Fairbairn?s Britannia bridge in the 1840s, the masonry Aswan Dam in the 1890s, concrete dams in the 1920s, thin concrete shell roofs and the dynamic behaviour of tall buildings in earthquakes from the 1930s, tidal flow in estuaries and the acoustics of concert halls from the 1950s, and cable-net and membrane structures in the 1960s. Traditionally, progress in engineering has been attributed to the creation and use of engineering science, the understanding materials properties and the development of new construction methods. The book argues that the use of reduced scale models have played an equally important part in the development of civil and building engineering. However, like the history of engineering design itself, this crucial contribution has not been widely reported or celebrated. The book concludes with reviews of the current use of physical models alongside computer models, for example, in boundary layer wind tunnels, room acoustics, seismic engineering, hydrology, and air flow in buildings.

The Cell Method

The Cell Method PDF

Author: Elena Ferretti

Publisher: Momentum Press

Published: 2014-02-02

Total Pages: 282

ISBN-13: 1606506064

DOWNLOAD EBOOK →

The Cell Method (CM) is a computational tool that maintains critical multidimensional attributes of physical phenomena in analysis. This information is neglected in the differential formulations of the classical approaches of finite element, boundary element, finite volume, and finite difference analysis, often leading to numerical instabilities and spurious results. This book highlights the central theoretical concepts of the CM that preserve a more accurate and precise representation of the geometric and topological features of variables for practical problem solving. Important applications occur in fields such as electromagnetics, electrodynamics, solid mechanics and fluids. CM addresses non-locality in continuum mechanics, an especially important circumstance in modeling heterogeneous materials. Professional engineers and scientists, as well as graduate students, are offered: • A general overview of physics and its mathematical descriptions; • Guidance on how to build direct, discrete formulations; • Coverage of the governing equations of the CM, including nonlocality; • Explanations of the use of Tonti diagrams; and • References for further reading.

Creep and Hygrothermal Effects in Concrete Structures

Creep and Hygrothermal Effects in Concrete Structures PDF

Author: Zdeněk P. Bažant

Publisher: Springer

Published: 2018-01-17

Total Pages: 918

ISBN-13: 9402411380

DOWNLOAD EBOOK →

This comprehensive treatise covers in detail practical methods of analysis as well as advanced mathematical models for structures highly sensitive to creep and shrinkage. Effective computational algorithms for century-long creep effects in structures, moisture diffusion and high temperature effects are presented. The main design codes and recommendations (including RILEM B3 and B4) are critically compared. Statistical uncertainty of century-long predictions is analyzed and its reduction by extrapolation is discussed, with emphasis on updating based on short-time tests and on long-term measurements on existing structures. Testing methods and the statistics of large randomly collected databases are critically appraised and improvements of predictions of multi-decade relaxation of prestressing steel, cyclic creep in bridges, cracking damage, etc., are demonstrated. Important research directions, such as nanomechanical and probabilistic modeling, are identified, and the need for separating the long-lasting autogenous shrinkage of modern concretes from the creep and drying shrinkage data and introducing it into practical prediction models is emphasized. All the results are derived mathematically and justified as much as possible by extensive test data. The theoretical background in linear viscoelasticity with aging is covered in detail. The didactic style makes the book suitable as a textbook. Everything is properly explained, step by step, with a wealth of application examples as well as simple illustrations of the basic phenomena which could alternate as homeworks or exams. The book is of interest to practicing engineers, researchers, educators and graduate students.