Monte Carlo Methods and Codes for Nuclear Engineering Analysis

Monte Carlo Methods and Codes for Nuclear Engineering Analysis PDF

Author: Christopher Perfetti

Publisher: Woodhead Publishing

Published: 2019-06-15

Total Pages: 390

ISBN-13: 9780128154007

DOWNLOAD EBOOK →

Monte Carlo Methods and Codes for Nuclear Engineering Analysis provides a comprehensive survey of the state-of-the-art in radiation transport methods used by Monte Carlo (MC) codes. It then goes on to explore the real-world implementation of these methods in codes used by nuclear and scientists engineers, considering the advantages and disadvantages of the various techniques, design philosophies, and algorithm implementations. After a foreword and introduction giving a brief history of Monte Carlo methods, code systems, and their applications in nuclear science and engineering, subsequent chapters describe the fundamentals of Monte Carlo radiation transport methods by dividing the field into a number of topics or focus areas. The subjects selected include potential geometry and particle tracking, nuclear data, variance reduction, time-dependent analysis and parallel computing. Each chapter presents a comprehensive survey of the state-of-the-art implementations, algorithms, and methodologies used by production-level Monte Carlo codes for the area. A concluding chapter provides a handy summary by briefly listing the methods used by key Monte Carlo codes for each focus area in several tables. This book is an essential guide to Monte Carlo methods and codes for nuclear scientists, engineers and code developers in academia and industry and students studying this topic. discusses and compares the radiation transport methods in real-life Monte Carlo (MC) codes used by nuclear scientists and engineers presents in one convenient volume information previously scattered between conference papers, journal articles, and code manuals, thus allowing MC code users to compare the features and make and educated selections of the codes best meeting their needs chapters begin at a level that is appropriate for readers who are unfamiliar with the field, then go on to address the state-of-the-art

Exploring Monte Carlo Methods

Exploring Monte Carlo Methods PDF

Author: William L. Dunn

Publisher: Elsevier

Published: 2022-06-07

Total Pages: 594

ISBN-13: 0128197455

DOWNLOAD EBOOK →

Exploring Monte Carlo Methods, Second Edition provides a valuable introduction to the numerical methods that have come to be known as "Monte Carlo." This unique and trusted resource for course use, as well as researcher reference, offers accessible coverage, clear explanations and helpful examples throughout. Building from the basics, the text also includes applications in a variety of fields, such as physics, nuclear engineering, finance and investment, medical modeling and prediction, archaeology, geology and transportation planning. Provides a comprehensive yet concise treatment of Monte Carlo methods Uses the famous "Buffon’s needle problem" as a unifying theme to illustrate the many aspects of Monte Carlo methods Includes numerous exercises and useful appendices on: Certain mathematical functions, Bose Einstein functions, Fermi Dirac functions and Watson functions

Monte Carlo Calculations in Nuclear Medicine, Second Edition

Monte Carlo Calculations in Nuclear Medicine, Second Edition PDF

Author: Michael Ljungberg

Publisher: CRC Press

Published: 2012-11-06

Total Pages: 361

ISBN-13: 1439841098

DOWNLOAD EBOOK →

From first principles to current computer applications, Monte Carlo Calculations in Nuclear Medicine, Second Edition: Applications in Diagnostic Imaging covers the applications of Monte Carlo calculations in nuclear medicine and critically reviews them from a diagnostic perspective. Like the first edition, this book explains the Monte Carlo method and the principles behind SPECT and PET imaging, introduces the reader to some Monte Carlo software currently in use, and gives the reader a detailed idea of some possible applications of Monte Carlo in current research in SPECT and PET. New chapters in this edition cover codes and applications in pre-clinical PET and SPECT. The book explains how Monte Carlo methods and software packages can be applied to evaluate scatter in SPECT and PET imaging, collimation, and image deterioration. A guide for researchers and students developing methods to improve image resolution, it also demonstrates how Monte Carlo techniques can be used to simulate complex imaging systems.

Foundations in Applied Nuclear Engineering Analysis

Foundations in Applied Nuclear Engineering Analysis PDF

Author: Glenn E Sjoden

Publisher: World Scientific Publishing Company

Published: 2015-01-13

Total Pages: 404

ISBN-13: 9814630950

DOWNLOAD EBOOK →

Foundations in Applied Nuclear Engineering Analysis (2nd Edition) covers a fast-paced one semester course to address concepts of modeling in mathematics, engineering analysis, and computational problem solving needed in subjects such as radiation interactions, heat transfer, reactor physics, radiation transport, numerical modeling, etc., for success in a nuclear engineering/medical physics curriculum. While certain topics are covered tangentially, others are covered in depth to target on the appropriate amalgam of topics for success in navigating nuclear-related disciplines. Software examples and programming are used throughout the book, since computational capabilities are essential for new engineers. The book contains a array of topics that cover the essential subjects expected for students to successfully navigate into nuclear-related disciplines. The text assumes that students have familiarity with undergraduate mathematics and physics, and are ready to apply those skills to problems in nuclear engineering. Applications and problem sets are directed toward problems in nuclear science. Software examples using Mathematica software are used in the text. This text was developed as part of a very applied course in mathematical physics methods for nuclear engineers. The course in Nuclear Engineering Analysis that follows this text began at the University of Florida; the 2nd edition was released while at the Georgia Institute of Technology.

Nuclear Engineering

Nuclear Engineering PDF

Author: Zafar Ullah Koreshi

Publisher: Academic Press

Published: 2022-03-23

Total Pages: 549

ISBN-13: 0323908314

DOWNLOAD EBOOK →

Nuclear Engineering Mathematical Modeling and Simulation presents the mathematical modeling of neutron diffusion and transport. Aimed at students and early career engineers, this highly practical and visual resource guides the reader through computer simulations using the Monte Carlo Method which can be applied to a variety of applications, including power generation, criticality assemblies, nuclear detection systems, and nuclear medicine to name a few. The book covers optimization in both the traditional deterministic framework of variational methods and the stochastic framework of Monte Carlo methods. Specific sections cover the fundamentals of nuclear physics, computer codes used for neutron and photon radiation transport simulations, applications of analyses and simulations, optimization techniques for both fixed-source and multiplying systems, and various simulations in the medical area where radioisotopes are used in cancer treatment. Provides a highly visual and practical reference that includes mathematical modeling, formulations, models and methods throughout Includes all current major computer codes, such as ANISN, MCNP and MATLAB for user coding and analysis Guides the reader through simulations for the design optimization of both present-day and future nuclear systems

Nuclear Power Plant Design and Analysis Codes

Nuclear Power Plant Design and Analysis Codes PDF

Author: Jun Wang

Publisher: Woodhead Publishing

Published: 2020-11-10

Total Pages: 612

ISBN-13: 0128181915

DOWNLOAD EBOOK →

Nuclear Power Plant Design and Analysis Codes: Development, Validation, and Application presents the latest research on the most widely used nuclear codes and the wealth of successful accomplishments which have been achieved over the past decades by experts in the field. Editors Wang, Li,Allison, and Hohorst and their team of authors provide readers with a comprehensive understanding of nuclear code development and how to apply it to their work and research to make their energy production more flexible, economical, reliable and safe.Written in an accessible and practical way, each chapter considers strengths and limitations, data availability needs, verification and validation methodologies and quality assurance guidelines to develop thorough and robust models and simulation tools both inside and outside a nuclear setting. This book benefits those working in nuclear reactor physics and thermal-hydraulics, as well as those involved in nuclear reactor licensing. It also provides early career researchers with a solid understanding of fundamental knowledge of mainstream nuclear modelling codes, as well as the more experienced engineers seeking advanced information on the best solutions to suit their needs. Captures important research conducted over last few decades by experts and allows new researchers and professionals to learn from the work of their predecessors Presents the most recent updates and developments, including the capabilities, limitations, and future development needs of all codes Incudes applications for each code to ensure readers have complete knowledge to apply to their own setting

A Monte Carlo Primer

A Monte Carlo Primer PDF

Author: Stephen A. Dupree

Publisher: Springer

Published: 2012-11-05

Total Pages: 0

ISBN-13: 9781461347682

DOWNLOAD EBOOK →

In Volume 1, A Monte Carlo Primer - A Practical Approach to Radiation Transport (the "Primer"), we attempt to provide a simple, convenient, and step-by-step approach to the development, basic understanding, and use of Monte Carlo methods in radiation transport. Using the PC, the Primer begins by developing basic Monte Carlo codes to solve simple transport problems, then introduces a teaching tool, the Probabilistic Framework Code (PFC), as a standard platform for assembling, testing, and executing the various Monte Carlo techniques that are presented. This second volume attempts to continue this approach by using both custom Monte Carlo codes and PFC to apply the concepts explained in the Primer to obtain solutions to the exercises given at the end of each chapter in the Primer. A relatively modest number of exercises is included in the Primer. Some ambiguity is left in the statement of many of the exercises because the intent is not to have the user write a particular, uniquely correct piece of coding that produces a specific number as a result, but rather to encourage the user to think about the problems and develop further the concepts explained in the text. Because in most cases there is more than one way to solve a Monte Carlo transport problem, we believe that working with the concepts illustrated by the exercises is more important than obtaining anyone particular solution.

Resonance Self-Shielding Calculation Methods in Nuclear Reactors

Resonance Self-Shielding Calculation Methods in Nuclear Reactors PDF

Author: Liangzhi Cao

Publisher: Woodhead Publishing

Published: 2022-10-01

Total Pages: 412

ISBN-13: 0323858759

DOWNLOAD EBOOK →

Resonance Self-Shielding Calculation Methods in Nuclear Reactors presents the latest progress in resonance self-shielding methods for both deterministic and Mote Carlo methods, including key advances over the last decade such as high-fidelity resonance treatment, resonance interference effect and multi-group equivalence. As the demand for high-fidelity resonance self-shielding treatment is increasing due to the rapid development of advanced nuclear reactor concepts and progression in high performance computational technologies, this practical book guides students and professionals in nuclear engineering and technology through various methods with proven high precision and efficiency. Presents a collection of resonance self-shielding methods, as well as numerical methods and numerical results Includes new topics in resonance self-shielding treatment Provides source codes of key calculations presented

Handbook of Nuclear Engineering

Handbook of Nuclear Engineering PDF

Author: Dan Gabriel Cacuci

Publisher: Springer Science & Business Media

Published: 2010-09-14

Total Pages: 3701

ISBN-13: 0387981306

DOWNLOAD EBOOK →

This is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all levels, this book provides a condensed reference on nuclear engineering since 1958.