Monge Ampere Equation: Applications to Geometry and Optimization

Monge Ampere Equation: Applications to Geometry and Optimization PDF

Author: Luis A. Caffarelli

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 186

ISBN-13: 0821809172

DOWNLOAD EBOOK →

In recent years, the Monge Ampère Equation has received attention for its role in several new areas of applied mathematics: as a new method of discretization for evolution equations of classical mechanics, such as the Euler equation, flow in porous media, Hele-Shaw flow, etc.; as a simple model for optimal transportation and a div-curl decomposition with affine invariance; and as a model for front formation in meteorology and optimal antenna design. These applications were addressed and important theoretical advances presented at a NSF-CBMS conference held at Florida Atlantic University (Boca Raton). L. Cafarelli and other distinguished specialists contributed high-quality research results and up-to-date developments in the field. This is a comprehensive volume outlining current directions in nonlinear analysis and its applications.

The Monge—Ampère Equation

The Monge—Ampère Equation PDF

Author: Cristian E. Gutierrez

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 140

ISBN-13: 1461201950

DOWNLOAD EBOOK →

The Monge-Ampère equation has attracted considerable interest in recent years because of its important role in several areas of applied mathematics. Monge-Ampère type equations have applications in the areas of differential geometry, the calculus of variations, and several optimization problems, such as the Monge-Kantorovitch mass transfer problem. This book stresses the geometric aspects of this beautiful theory, using techniques from harmonic analysis – covering lemmas and set decompositions.

Analysis of Monge–Ampère Equations

Analysis of Monge–Ampère Equations PDF

Author: Nam Q. Le

Publisher: American Mathematical Society

Published: 2024-03-07

Total Pages: 599

ISBN-13: 1470474204

DOWNLOAD EBOOK →

This book presents a systematic analysis of the Monge–Ampère equation, the linearized Monge–Ampère equation, and their applications, with emphasis on both interior and boundary theories. Starting from scratch, it gives an extensive survey of fundamental results, essential techniques, and intriguing phenomena in the solvability, geometry, and regularity of Monge–Ampère equations. It describes in depth diverse applications arising in geometry, fluid mechanics, meteorology, economics, and the calculus of variations. The modern treatment of boundary behaviors of solutions to Monge–Ampère equations, a very important topic of the theory, is thoroughly discussed. The book synthesizes many important recent advances, including Savin's boundary localization theorem, spectral theory, and interior and boundary regularity in Sobolev and Hölder spaces with optimal assumptions. It highlights geometric aspects of the theory and connections with adjacent research areas. This self-contained book provides the necessary background and techniques in convex geometry, real analysis, and partial differential equations, presents detailed proofs of all theorems, explains subtle constructions, and includes well over a hundred exercises. It can serve as an accessible text for graduate students as well as researchers interested in this subject.

The Monge-Ampère Equation

The Monge-Ampère Equation PDF

Author: Cristian E. Gutiérrez

Publisher: Birkhäuser

Published: 2016-10-22

Total Pages: 216

ISBN-13: 3319433741

DOWNLOAD EBOOK →

Now in its second edition, this monograph explores the Monge-Ampère equation and the latest advances in its study and applications. It provides an essentially self-contained systematic exposition of the theory of weak solutions, including regularity results by L. A. Caffarelli. The geometric aspects of this theory are stressed using techniques from harmonic analysis, such as covering lemmas and set decompositions. An effort is made to present complete proofs of all theorems, and examples and exercises are offered to further illustrate important concepts. Some of the topics considered include generalized solutions, non-divergence equations, cross sections, and convex solutions. New to this edition is a chapter on the linearized Monge-Ampère equation and a chapter on interior Hölder estimates for second derivatives. Bibliographic notes, updated and expanded from the first edition, are included at the end of every chapter for further reading on Monge-Ampère-type equations and their diverse applications in the areas of differential geometry, the calculus of variations, optimization problems, optimal mass transport, and geometric optics. Both researchers and graduate students working on nonlinear differential equations and their applications will find this to be a useful and concise resource.

Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations

Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampère Equations PDF

Author: Hiroyoshi Mitake

Publisher: Springer

Published: 2017-06-14

Total Pages: 233

ISBN-13: 3319542087

DOWNLOAD EBOOK →

Consisting of two parts, the first part of this volume is an essentially self-contained exposition of the geometric aspects of local and global regularity theory for the Monge–Ampère and linearized Monge–Ampère equations. As an application, we solve the second boundary value problem of the prescribed affine mean curvature equation, which can be viewed as a coupling of the latter two equations. Of interest in its own right, the linearized Monge–Ampère equation also has deep connections and applications in analysis, fluid mechanics and geometry, including the semi-geostrophic equations in atmospheric flows, the affine maximal surface equation in affine geometry and the problem of finding Kahler metrics of constant scalar curvature in complex geometry. Among other topics, the second part provides a thorough exposition of the large time behavior and discounted approximation of Hamilton–Jacobi equations, which have received much attention in the last two decades, and a new approach to the subject, the nonlinear adjoint method, is introduced. The appendix offers a short introduction to the theory of viscosity solutions of first-order Hamilton–Jacobi equations.

The Monge-Ampère Equation and Its Applications

The Monge-Ampère Equation and Its Applications PDF

Author: Alessio Figalli

Publisher:

Published: 2017

Total Pages: 0

ISBN-13: 9783037191705

DOWNLOAD EBOOK →

The Monge-Ampere equation is one of the most important partial differential equations, appearing in many problems in analysis and geometry. This monograph is a comprehensive introduction to the existence and regularity theory of the Monge-Ampere equation and some selected applications; the main goal is to provide the reader with a wealth of results and techniques he or she can draw from to understand current research related to this beautiful equation. The presentation is essentially self-contained, with an appendix that contains precise statements of all the results used from different areas (linear algebra, convex geometry, measure theory, nonlinear analysis, and PDEs). This book is intended for graduate students and researchers interested in nonlinear PDEs: explanatory figures, detailed proofs, and heuristic arguments make this book suitable for self-study and also as a reference.

Geometric Partial Differential Equations - Part 2

Geometric Partial Differential Equations - Part 2 PDF

Author: Andrea Bonito

Publisher: Elsevier

Published: 2021-01-26

Total Pages: 572

ISBN-13: 0444643060

DOWNLOAD EBOOK →

Besides their intrinsic mathematical interest, geometric partial differential equations (PDEs) are ubiquitous in many scientific, engineering and industrial applications. They represent an intellectual challenge and have received a great deal of attention recently. The purpose of this volume is to provide a missing reference consisting of self-contained and comprehensive presentations. It includes basic ideas, analysis and applications of state-of-the-art fundamental algorithms for the approximation of geometric PDEs together with their impacts in a variety of fields within mathematics, science, and engineering. About every aspect of computational geometric PDEs is discussed in this and a companion volume. Topics in this volume include stationary and time-dependent surface PDEs for geometric flows, large deformations of nonlinearly geometric plates and rods, level set and phase field methods and applications, free boundary problems, discrete Riemannian calculus and morphing, fully nonlinear PDEs including Monge-Ampere equations, and PDE constrained optimization Each chapter is a complete essay at the research level but accessible to junior researchers and students. The intent is to provide a comprehensive description of algorithms and their analysis for a specific geometric PDE class, starting from basic concepts and concluding with interesting applications. Each chapter is thus useful as an introduction to a research area as well as a teaching resource, and provides numerous pointers to the literature for further reading The authors of each chapter are world leaders in their field of expertise and skillful writers. This book is thus meant to provide an invaluable, readable and enjoyable account of computational geometric PDEs

Second Summer School in Analysis and Mathematical Physics

Second Summer School in Analysis and Mathematical Physics PDF

Author: Salvador Pérez-Esteva

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 288

ISBN-13: 0821827081

DOWNLOAD EBOOK →

For the second time, a Summer School in Analysis and Mathematical Physics took place at the Universidad Nacional Autonoma de Mexico in Cuernavaca. The purpose of the schools is to provide a bridge from standard graduate courses in mathematics to current research topics, particularly in analysis. The lectures are given by internationally recognized specialists in the fields. The topics covered in this Second Summer School include harmonic analysis, complex analysis, pseudodifferential operators, the mathematics of quantum chaos, and non-linear analysis.

Real Algebraic Geometry and Ordered Structures

Real Algebraic Geometry and Ordered Structures PDF

Author: Charles N. Delzell

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 320

ISBN-13: 0821808044

DOWNLOAD EBOOK →

This volume contains 16 carefully refereed articles by participants in the Special Semester and the AMS Special Session on Real Algebraic Geometry and Ordered Structures held at Louisiana State University and Southern University (Baton Rouge). The 23 contributors to this volume were among the 75 mathematicians from 15 countries who participated in the special semester. Topics include the topology of real algebraic curves (Hilbert's 16th problem), moduli of real algebraic curves, effective sums of squares of real forms (Hilbert's 17th problem), efficient real quantifier elimination, subanalytic sets and stratifications, semialgebraic singularity theory, radial vector fields, exponential functions and valuations on nonarchimedean ordered fields, valued field extensions, partially ordered and lattice-ordered rings, rings of continuous functions, spectra of rings, and abstract spaces of (higher-level) orderings and real places. This volume provides a good overview of the state of the art in this area in the 1990s. It includes both expository and original research papers by top workers in this thriving field. The authors and editors strived to make the volume useful to a wide audience (including students and researchers) interested in real algebraic geometry and ordered structures-two subjects that are obviously related, but seldom brought together.

ICIAM 07

ICIAM 07 PDF

Author: Rolf Jeltsch

Publisher: European Mathematical Society

Published: 2009

Total Pages: 528

ISBN-13: 9783037190562

DOWNLOAD EBOOK →

The International Council for Industrial and Applied Mathematics (ICIAM) is the worldwide organization of societies which are dedicated primarily or significantly to applied and/or industrial mathematics. The ICIAM Congresses, held every 4 years, are run under the auspices of the Council with the aim to advance the applications of mathematics in all parts of the world. The Sixth ICIAM Congress was held in Zurich, Switzerland, July 16-20, 2007, and was attended by more than 3000 scientists from 47 countries. This volume collects the invited lectures of this Congress, the appreciations of the ICIAM Prize winners' achievements, and the Euler Lecture celebrating the 300th anniversary of Euler. The authors of these papers are leading researchers in their fields, rigorously selected by a distinguished international program committee. The book presents an overview of contemporary applications of mathematics, new perspectives, and open problems. Topics embrace analysis of and numerical methods for: linear and nonlinear partial differential equations multiscale modeling nonlinear problems involving integral operators controllability and observability asymptotic solutions of Hamilton-Jacobi equations contact problems in solid mechanics topology optimization of structures dissipation inequalities in systems theory greedy algorithms sampling in function space order-value optimization parabolic partial differential equations and deterministic games Moreover, particular applications involve risk in financial markets, radar imaging, brain dynamics, and complex geometric optics applied to acoustics and electromagnetics.