Molecular Simulation of Fluids

Molecular Simulation of Fluids PDF

Author: Richard J. Sadus

Publisher: Elsevier

Published: 2002-05-17

Total Pages: 644

ISBN-13: 9780444510822

DOWNLOAD EBOOK →

The aim of this book is to examine some of the important aspects of recent progress in the use of molecular simulation for investigating fluids. It encompasses both Monte Carlo and molecular dynamic techniques providing details of theory, algorithms and implementation.

Molecular Simulation of Fluids

Molecular Simulation of Fluids PDF

Author: Richard J. Sadus

Publisher: Elsevier

Published: 2023-09-16

Total Pages: 617

ISBN-13: 0323910556

DOWNLOAD EBOOK →

Molecular simulation allows researchers unique insight into the structures and interactions at play in fluids. Since publication of the first edition of Molecular Simulation of Fluids, novel developments in theory, algorithms and computer hardware have generated enormous growth in simulation capabilities. This 2nd edition has been fully updated and expanded to highlight this recent progress, encompassing both Monte Carlo and molecular dynamic techniques, and providing details of theory, algorithms and both serial and parallel implementations. Beginning with a clear introduction and review of theoretical foundations, the book goes on to explore intermolecular potentials before discussing the calculation of molecular interactions in more detail. Monte Carlo simulation and integrators for molecular dynamics are then discussed further, followed by non-equilibrium molecular dynamics and molecular simulation of ensembles and phase equilibria. The use of object-orientation is examined in detail, with working examples coded in C++. Finally, practical parallel simulation algorithms are discussed using both MPI and GPUs, with the latter coded in CUDA. Drawing on the extensive experience of its expert author, Molecular Simulation of Fluids: Theory, Algorithms, Object-Orientation, and Parallel Computing 2nd Edition is a practical, accessible guide to this complex topic for all those currently using, or interested in using, molecular simulation to study fluids. Fully updated and revised to reflect advances in the field, including new chapters on intermolecular potentials and parallel algorithms Covers the application of both MPI and GPU programming to molecular simulation Covers a wide range of simulation topics using both Monte Carlo and molecular dynamics approaches Provides access to downloadable simulation code, including GPU code using CUDA, to encourage practice and support learning

Computer Simulation of Liquids

Computer Simulation of Liquids PDF

Author: M. P. Allen

Publisher: Oxford University Press

Published: 1989

Total Pages: 412

ISBN-13: 9780198556459

DOWNLOAD EBOOK →

Computer simulation is an essential tool in studying the chemistry and physics of liquids. Simulations allow us to develop models and to test them against experimental data. This book is an introduction and practical guide to the molecular dynamics and Monte Carlo methods.

Molecular Simulation Studies on Thermophysical Properties

Molecular Simulation Studies on Thermophysical Properties PDF

Author: Gabriele Raabe

Publisher: Springer

Published: 2017-02-17

Total Pages: 324

ISBN-13: 9811035458

DOWNLOAD EBOOK →

This book discusses the fundamentals of molecular simulation, starting with the basics of statistical mechanics and providing introductions to Monte Carlo and molecular dynamics simulation techniques. It also offers an overview of force-field models for molecular simulations and their parameterization, with a discussion of specific aspects. The book then summarizes the available know-how for analyzing molecular simulation outputs to derive information on thermophysical and structural properties. Both the force-field modeling and the analysis of simulation outputs are illustrated by various examples. Simulation studies on recently introduced HFO compounds as working fluids for different technical applications demonstrate the value of molecular simulations in providing predictions for poorly understood compounds and gaining a molecular-level understanding of their properties. This book will prove a valuable resource to researchers and students alike.

The Liquid State

The Liquid State PDF

Author: David M. Heyes

Publisher: John Wiley & Sons

Published: 1998

Total Pages: 272

ISBN-13:

DOWNLOAD EBOOK →

Topics covered include basic theory, procedural aspects of implementation of basic equations on the computer and a review of recent applications in emerging areas of research.

Molecular Dynamics

Molecular Dynamics PDF

Author: Perla Balbuena

Publisher: Elsevier

Published: 1999-04-22

Total Pages: 971

ISBN-13: 0080536840

DOWNLOAD EBOOK →

The latest developments in quantum and classical molecular dynamics, related techniques, and their applications to several fields of science and engineering. Molecular simulations include a broad range of methodologies such as Monte Carlo, Brownian dynamics, lattice dynamics, and molecular dynamics (MD). Features of this book: • Presents advances in methodologies, introduces quantum methods and lists new techniques for classical MD • Deals with complex systems: biomolecules, aqueous solutions, ice and clathrates, liquid crystals, polymers • Provides chemical reactions, interfaces, catalysis, surface phenomena and solids Although the book is not formally divided into methods and applications, the chapters are arranged starting with those that discuss new algorithms, methods and techniques, followed by several important applications.

Nonequilibrium Gas Dynamics and Molecular Simulation

Nonequilibrium Gas Dynamics and Molecular Simulation PDF

Author: Iain D. Boyd

Publisher: Cambridge University Press

Published: 2017-03-23

Total Pages: 383

ISBN-13: 1107073448

DOWNLOAD EBOOK →

7.1 Introduction -- 7.2 Rotational Energy Exchange Models -- 7.2.1 Constant Collision Number -- 7.2.2 The Parker Model -- 7.2.3 Variable Probability Exchange Model of Boyd -- 7.2.4 Nonequilibrium Direction Dependent Model -- 7.2.5 Model Results -- 7.3 Vibrational Energy Exchange Models -- 7.3.1 Constant Collision Number -- 7.3.2 The Millikan-White Model -- 7.3.3 Quantized Treatment for Vibration -- 7.3.4 Model Results -- 7.4 Dissociation Chemical Reactions -- 7.4.1 Total Collision Energy Model -- 7.4.2 Redistribution of Energy Following a Dissociation Reaction -- 7.4.3 Vibrationally Favored Dissociation Model -- 7.5 General Chemical Reactions -- 7.5.1 Reaction Rates and Equilibrium Constant -- 7.5.2 Backward Reaction Rates in DSMC -- 7.5.3 Three-Body Recombination Reactions -- 7.5.4 Post-Reaction Energy Redistribution and General Implementation -- 7.5.5 DSMC Solutions for Reacting Flows -- 7.6 Summary -- Appendix A: Generating Particle Properties -- Appendix B: Collisional Quantities -- Appendix C: Determining Post-Collision Velocities -- Appendix D: Macroscopic Properties -- Appendix E: Common Integrals -- References -- Index

Understanding Molecular Simulation

Understanding Molecular Simulation PDF

Author: Daan Frenkel

Publisher: Elsevier

Published: 2023-07-13

Total Pages: 868

ISBN-13: 0323913180

DOWNLOAD EBOOK →

Understanding Molecular Simulation explains molecular simulation from a chemical-physics and statistical-mechanics perspective. It highlights how physical concepts are used to develop better algorithms and expand the range of applicability of simulations. Understanding Molecular Simulation is equally relevant for those who develop new code and those who use existing packages. Both groups are continuously confronted with the question of which computational technique best suits a given application. Understanding Molecular Simulation provides readers with the foundational knowledge they need to learn about, select and apply the most appropriate of these tools to their own work. The implementation of simulation methods is illustrated in pseudocodes, and their practical use is shown via case studies presented throughout the text. Since the second edition’s publication, the simulation world has expanded significantly: existing techniques have continued to develop, and new ones have emerged, opening up novel application areas. This new edition aims to describe these new developments without becoming exhaustive; examples are included that highlight current uses, and several new examples have been added to illustrate recent applications. Examples, case studies, questions, and downloadable algorithms are also included to support learning. No prior knowledge of computer simulation is assumed. Fully updated guide to both the current state and latest developments in the field of molecular simulation, including added and expanded information on such topics as molecular dynamics and statistical assessment of simulation results Gives a rounded overview by showing fundamental background information in practice via new examples in a range of key fields Provides online access to new data, algorithms and tutorial slides to support and encourage practice and learning