Modern Physical Metallurgy and Materials Engineering

Modern Physical Metallurgy and Materials Engineering PDF

Author: R. E. Smallman

Publisher: Elsevier

Published: 1999-11-22

Total Pages: 449

ISBN-13: 0080511996

DOWNLOAD EBOOK →

For many years, various editions of Smallman's Modern Physical Metallurgy have served throughout the world as a standard undergraduate textbook on metals and alloys. In 1995, it was rewritten and enlarged to encompass the related subject of materials science and engineering and appeared under the title Metals & Materials: Science, Processes, Applications offering a comprehensive amount of a much wider range of engineering materials. Coverage ranged from pure elements to superalloys, from glasses to engineering ceramics, and from everyday plastics to in situ composites, Amongst other favourable reviews, Professor Bhadeshia of Cambridge University commented: "Given the amount of work that has obviously gone into this book and its extensive comments, it is very attractively priced. It is an excellent book to be recommend strongly for purchase by undergraduates in materials-related subjects, who should benefit greatly by owning a text containing so much knowledge."The book now includes new chapters on materials for sports equipment (golf, tennis, bicycles, skiing, etc.) and biomaterials (replacement joints, heart valves, tissue repair, etc.) - two of the most exciting and rewarding areas in current materials research and development. As in its predecessor, numerous examples are given of the ways in which knowledge of the relation between fine structure and properties has made it possible to optimise the service behaviour of traditional engineering materials and to develop completely new and exciting classes of materials. Special consideration is given to the crucial processing stage that enables materials to be produced as marketable commodities. Whilst attempting to produce a useful and relatively concise survey of key materials and their interrelationships, the authors have tried to make the subject accessible to a wide range of readers, to provide insights into specialised methods of examination and to convey the excitement of the atmosphere in which new materials are conceived and developed.

Modern Physical Metallurgy

Modern Physical Metallurgy PDF

Author: R. E. Smallman, PhD

Publisher: Butterworth-Heinemann

Published: 2018-11-13

Total Pages: 720

ISBN-13: 9780081013052

DOWNLOAD EBOOK →

Modern Physical Metallurgy describes, in a very readable form, the fundamental principles of physical metallurgy and the basic techniques for assessing microstructure. This book enables you to understand the properties and applications of metals and alloys at a deeper level than that provided in an introductory materials course. The eighth edition of this classic text has been updated to provide a balanced coverage of properties, characterization, phase transformations, crystal structure, and corrosion not available in other texts, and includes updated illustrations along with extensive new real-world examples and homework problems. Renowned coverage of metals and alloys from one of the world's leading metallurgy educators Covers new materials characterization techniques, including scanning tunneling microscopy (STM), atomic force microscopy (AFM), and nanoindentation Provides the most thorough coverage of characterization, mechanical properties, surface engineering and corrosion of any textbook in its field Includes new worked examples with real-world applications, case studies, extensive homework exercises, and a full online solutions manual and image bank

Modern Physical Metallurgy

Modern Physical Metallurgy PDF

Author: R. E. Smallman

Publisher: Elsevier

Published: 2016-06-24

Total Pages: 545

ISBN-13: 1483105970

DOWNLOAD EBOOK →

Modern Physical Metallurgy, Fourth Edition discusses the fundamentals and applications of physical metallurgy. The book is comprised of 15 chapters that cover the experimental background of a metallurgical phenomenon. The text first talks about the structure of atoms and crystals, and then proceeds to dealing with the physical examination of metals and alloys. The third chapter tackles the phase diagrams and solidifications, while the fourth chapter covers the thermodynamics of crystals. Next, the book discusses the structure of alloys. The next four chapters deal with the deformations and defects of crystals, metals, and alloys. Chapter 10 discusses work hardening and annealing, while Chapters 11 and 12 cover phase transformations. The succeeding two chapters talk about creep, fatigue, and fracture, while the last chapter covers oxidation and corrosion. The text will be of great use to undergraduate students of materials engineering and other degrees that deal with metallurgical properties.

Physical Metallurgy

Physical Metallurgy PDF

Author: William F. Hosford

Publisher: CRC Press

Published: 2005-03-29

Total Pages: 526

ISBN-13: 9780824724214

DOWNLOAD EBOOK →

For students ready to advance in their study of metals, Physical Metallurgy combines theoretical concepts, real alloy systems, processing procedures, and examples of real-world applications. The author uses his experience in teaching physical metallurgy at the University of Michigan to convey this topic with greater depth and detail than most introductory materials courses offer. The book follows its introduction of metals with topics that are common to all metals, including solidification, diffusion, surfaces, solid solutions, intermediate phases, dislocations, annealing, and phase transformations. Other chapters focus on specific nonferrous alloy systems and their significant metallurgical properties and applications, the treatment of steels includes separate chapters on iron-carbon alloys, hardening, tempering and surface treatment, special steels and low carbon sheet steel, followed by a separate chapter on cast irons. Concluding chapters treat powder metallurgy, corrosion, welding and magnetic alloys. There are appendices on microstructural analysis, stereographic projection, and the Miller-Bravais system for hexagonal crystals. These chapters cover ternary phase diagrams, diffusion in multiphase systems, the thermodynamic basis for phase diagrams, stacking faults and hydrogen embrittlement. Physical Metallurgy uses engaging historical and contemporary examples that relate to the applications of concepts in each chapter. With ample references and sample problems throughout, this text is a superb tool for any advanced materials science course.

Physical Foundations of Materials Science

Physical Foundations of Materials Science PDF

Author: Günter Gottstein

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 511

ISBN-13: 3662092913

DOWNLOAD EBOOK →

In this vivid and comprehensible introduction to materials science, the author expands the modern concepts of metal physics to formulate basic theory applicable to other engineering materials, such as ceramics and polymers. Written for engineering students and working engineers with little previous knowledge of solid-state physics, this textbook enables the reader to study more specialized and fundamental literature of materials science. Dozens of illustrative photographs, many of them transmission electron microscopy images, plus line drawings, aid developing a firm appreciation of this complex topic. Hard-to-grasp terms such as "textures" are lucidly explained - not only the phenomenon itself, but also its consequences for the material properties. This excellent book makes materials science more transparent.

Physical Metallurgy

Physical Metallurgy PDF

Author: Gregory N. Haidemenopoulos

Publisher: CRC Press

Published: 2018-02-07

Total Pages: 476

ISBN-13: 1351812041

DOWNLOAD EBOOK →

Physical metallurgy is one of the main fields of metallurgical science dealing with the development of the microstructure of metals in order to achieve desirable properties required in technological applications. Physical Metallurgy: Principles and Design focuses on the processing–structure–properties triangle as it applies to metals and alloys. It introduces the fundamental principles of physical metallurgy and the design methodologies for alloys and processing. The first part of the book discusses the structure and change of structure through phase transformations. The latter part of the books deals with plastic deformation, strengthening mechanisms, and mechanical properties as they relate to structure. The book also includes a chapter on physical metallurgy of steels and concludes by discussing the computational tools, involving computational thermodynamics and kinetics, to perform alloy and process design.