Hierarchical Modeling and Inference in Ecology

Hierarchical Modeling and Inference in Ecology PDF

Author: J. Andrew Royle

Publisher: Elsevier

Published: 2008-10-15

Total Pages: 463

ISBN-13: 0080559255

DOWNLOAD EBOOK →

A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics Wide variety of examples involving many taxa (birds, amphibians, mammals, insects, plants) Development of classical, likelihood-based procedures for inference, as well as Bayesian methods of analysis Detailed explanations describing the implementation of hierarchical models using freely available software such as R and WinBUGS Computing support in technical appendices in an online companion web site

Structured-Population Models in Marine, Terrestrial, and Freshwater Systems

Structured-Population Models in Marine, Terrestrial, and Freshwater Systems PDF

Author: Shripad Tuljapurkar

Publisher: Springer Science & Business Media

Published: 1997-01-31

Total Pages: 660

ISBN-13: 9780412072710

DOWNLOAD EBOOK →

Providing many examples of how models can be implemented and interpreted, this book describes the biology of the life cycle and follows the transitions of individuals through stages in the life cycle. The focus is on models as tools.

Individual-Based Models and Approaches In Ecology

Individual-Based Models and Approaches In Ecology PDF

Author: D. L. DeAngelis

Publisher: CRC Press

Published: 2018-01-18

Total Pages: 545

ISBN-13: 1351090364

DOWNLOAD EBOOK →

Until fairly recently, populations were handled as homogenized averages, which made modeling feasible but which ignored the essential fact that in any population there is a great variety of individuals of different ages, sizes, and degrees of fitness. Recently, because of the increased availability of affordable computer power, approaches have been developed which are able to recognize individual differences. Individual-based models are of great use in the areas of aquatic ecology, terrestrial ecology, landscape or physiological ecology, terrestrial ecology, landscape or physiological ecology, and agriculture. This book discusses which biological problems individual-based models can solve, as well as the models' inherent limitations. It explores likely future directions of theoretical development in these models, as well as currently feasible management applications and the best mathematical approaches and computer languages to use. The book also details specific applications to theory and management.

Mathematics and 21st Century Biology

Mathematics and 21st Century Biology PDF

Author: National Research Council

Publisher: National Academies Press

Published: 2005-07-16

Total Pages: 163

ISBN-13: 0309095840

DOWNLOAD EBOOK →

The exponentially increasing amounts of biological data along with comparable advances in computing power are making possible the construction of quantitative, predictive biological systems models. This development could revolutionize those biology-based fields of science. To assist this transformation, the U.S. Department of Energy asked the National Research Council to recommend mathematical research activities to enable more effective use of the large amounts of existing genomic information and the structural and functional genomic information being created. The resulting study is a broad, scientifically based view of the opportunities lying at the mathematical science and biology interface. The book provides a review of past successes, an examination of opportunities at the various levels of biological systemsâ€" from molecules to ecosystemsâ€"an analysis of cross-cutting themes, and a set of recommendations to advance the mathematics-biology connection that are applicable to all agencies funding research in this area.

Stability and Complexity in Model Ecosystems

Stability and Complexity in Model Ecosystems PDF

Author:

Publisher: Princeton University Press

Published: 2001-03-18

Total Pages: 300

ISBN-13: 0691088616

DOWNLOAD EBOOK →

What makes populations stabilize? What makes them fluctuate? Are populations in complex ecosystems more stable than populations in simple ecosystems? In 1973, Robert May addressed these questions in this classic book. May investigated the mathematical roots of population dynamics and argued-counter to most current biological thinking-that complex ecosystems in themselves do not lead to population stability. Stability and Complexity in Model Ecosystems played a key role in introducing nonlinear mathematical models and the study of deterministic chaos into ecology, a role chronicled in James Gleick's book Chaos. In the quarter century since its first publication, the book's message has grown in power. Nonlinear models are now at the center of ecological thinking, and current threats to biodiversity have made questions about the role of ecosystem complexity more crucial than ever. In a new introduction, the author addresses some of the changes that have swept biology and the biological world since the book's first publication.

Individual-Based Models and Approaches In Ecology

Individual-Based Models and Approaches In Ecology PDF

Author: Donald Lee DeAngelis

Publisher: Chapman and Hall/CRC

Published: 1992-08

Total Pages: 566

ISBN-13:

DOWNLOAD EBOOK →

Until fairly recently, populations were handled as homogenized averages, which made modeling feasible but which ignored the essential fact that in any population there is a great variety of individuals of different ages, sizes, and degrees of fitness. Recently, because of the increased availability of affordable computer power, approaches have been developed which are able to recognize individual differences. Individual-based models are of great use in the areas of aquatic ecology, terrestrial ecology, landscape or physiological ecology, terrestrial ecology, landscape or physiological ecology, and agriculture. This book discusses which biological problems individual-based models can solve, as well as the models' inherent limitations. It explores likely future directions of theoretical development in these models, as well as currently feasible management applications and the best mathematical approaches and computer languages to use. The book also details specific applications to theory and management.

Spatial Ecology

Spatial Ecology PDF

Author: David Tilman

Publisher: Princeton University Press

Published: 2018-06-05

Total Pages: 368

ISBN-13: 069118836X

DOWNLOAD EBOOK →

Spatial Ecology addresses the fundamental effects of space on the dynamics of individual species and on the structure, dynamics, diversity, and stability of multispecies communities. Although the ecological world is unavoidably spatial, there have been few attempts to determine how explicit considerations of space may alter the predictions of ecological models, or what insights it may give into the causes of broad-scale ecological patterns. As this book demonstrates, the spatial structure of a habitat can fundamentally alter both the qualitative and quantitative dynamics and outcomes of ecological processes. Spatial Ecology highlights the importance of space to five topical areas: stability, patterns of diversity, invasions, coexistence, and pattern generation. It illustrates both the diversity of approaches used to study spatial ecology and the underlying similarities of these approaches. Over twenty contributors address issues ranging from the persistence of endangered species, to the maintenance of biodiversity, to the dynamics of hosts and their parasitoids, to disease dynamics, multispecies competition, population genetics, and fundamental processes relevant to all these cases. There have been many recent advances in our understanding of the influence of spatially explicit processes on individual species and on multispecies communities. This book synthesizes these advances, shows the limitations of traditional, non-spatial approaches, and offers a variety of new approaches to spatial ecology that should stimulate ecological research.

Nonlinear Dynamics of Interacting Populations

Nonlinear Dynamics of Interacting Populations PDF

Author: A. D. Bazykin

Publisher: World Scientific

Published: 1998

Total Pages: 224

ISBN-13: 9789810216856

DOWNLOAD EBOOK →

This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka-Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative theory of dynamical systems — most importantly bifurcation theory, which describes the dependence of a system on the parameters. This approach allows one to find general patterns of behavior that are expected to be observed in ecological models. Of special interest is the reaction of a given model to disturbances of its present state, as well as to changes in the external conditions. This leads to the general idea of “dangerous boundaries” in the state and parameter space of an ecological system. The study of these boundaries allows one to analyze and predict qualitative and often sudden changes of the dynamics — a much-needed tool, given the increasing antropogenic load on the biosphere.As a spin-off from this approach, the book can be used as a guided tour of bifurcation theory from the viewpoint of application. The interested reader will find a wealth of intriguing examples of how known bifurcations occur in applications. The book can in fact be seen as bridging the gap between mathematical biology and bifurcation theory.

Size-Structured Populations

Size-Structured Populations PDF

Author: Bo Ebenman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 288

ISBN-13: 3642740014

DOWNLOAD EBOOK →

At last both ecology and evolution are covered in this study on the dynamics of size-structured populations. How does natural selection shape growth patterns and life cycles of individuals, and hence the size-structure of populations? This book will stimulate biologists to look into some important and interesting biological problems from a new angle of approach, concerning: - life history evolution, - intraspecific competition and niche theory, - structure and dynamics of ecological communities.