Nonstandard Finite Difference Models of Differential Equations

Nonstandard Finite Difference Models of Differential Equations PDF

Author: Ronald E. Mickens

Publisher: World Scientific

Published: 1994

Total Pages: 264

ISBN-13: 9810214588

DOWNLOAD EBOOK →

This book provides a clear summary of the work of the author on the construction of nonstandard finite difference schemes for the numerical integration of differential equations. The major thrust of the book is to show that discrete models of differential equations exist such that the elementary types of numerical instabilities do not occur. A consequence of this result is that in general bigger step-sizes can often be used in actual calculations and/or finite difference schemes can be constructed that are conditionally stable in many instances whereas in using standard techniques no such schemes exist. The theoretical basis of this work is centered on the concepts of ?exact? and ?best? finite difference schemes. In addition, a set of rules is given for the discrete modeling of derivatives and nonlinear expressions that occur in differential equations. These rules often lead to a unique nonstandard finite difference model for a given differential equation.

Difference Equations, Second Edition

Difference Equations, Second Edition PDF

Author: R Mickens

Publisher: CRC Press

Published: 1991-01-01

Total Pages: 470

ISBN-13: 9780442001360

DOWNLOAD EBOOK →

In recent years, the study of difference equations has acquired a new significance, due in large part to their use in the formulation and analysis of discrete-time systems, the numerical integration of differential equations by finite-difference schemes, and the study of deterministic chaos. The second edition of Difference Equations: Theory and Applications provides a thorough listing of all major theorems along with proofs. The text treats the case of first-order difference equations in detail, using both analytical and geometrical methods. Both ordinary and partial difference equations are considered, along with a variety of special nonlinear forms for which exact solutions can be determined. Numerous worked examples and problems allow readers to fully understand the material in the text. They also give possible generalization of the theorems and application models. The text's expanded coverage of application helps readers appreciate the benefits of using difference equations in the modeling and analysis of "realistic" problems from a broad range of fields. The second edition presents, analyzes, and discusses a large number of applications from the mathematical, biological, physical, and social sciences. Discussions on perturbation methods and difference equation models of differential equation models of differential equations represent contributions by the author to the research literature. Reference to original literature show how the elementary models of the book can be extended to more realistic situations. Difference Equations, Second Edition gives readers a background in discrete mathematics that many workers in science-oriented industries need as part of their general scientific knowledge. With its minimal mathematical background requirements of general algebra and calculus, this unique volume will be used extensively by students and professional in science and technology, in areas such as applied mathematics, control theory, population science, economics, and electronic circuits, especially discrete signal processing.

Modelling with Ordinary Differential Equations

Modelling with Ordinary Differential Equations PDF

Author: T.P. Dreyer

Publisher: Routledge

Published: 2017-09-06

Total Pages: 302

ISBN-13: 1351430696

DOWNLOAD EBOOK →

Modelling with Ordinary Differential Equations integrates standard material from an elementary course on ordinary differential equations with the skills of mathematical modeling in a number of diverse real-world situations. Each situation highlights a different aspect of the theory or modeling. Carefully selected exercises and projects present excellent opportunities for tutorial sessions and self-study.This text/reference addresses common types of first order ordinary differential equations and the basic theory of linear second order equations with constant coefficients. It also explores the elementary theory of systems of differential equations, Laplace transforms, and numerical solutions. Theorems on the existence and uniqueness of solutions are a central feature. Topics such as curve fitting, time-delay equations, and phase plane diagrams are introduced. The book includes algorithms for computer programs as an integral part of the answer-finding process. Professionals and students in the social and biological sciences, as well as those in physics and mathematics will find this text/reference indispensable for self-study.

Mathematical Modeling using Differential Equations, and Network Theory

Mathematical Modeling using Differential Equations, and Network Theory PDF

Author: Ioannis Dassios

Publisher: MDPI

Published: 2020-06-23

Total Pages: 160

ISBN-13: 3039288253

DOWNLOAD EBOOK →

This Special Issue collects the latest results on differential/difference equations, the mathematics of networks, and their applications to engineering and physical phenomena. It features nine high-quality papers that were published with original research results. The Special Issue brings together mathematicians with physicists, engineers, as well as other scientists.

Mathematical Modeling

Mathematical Modeling PDF

Author: Sandip Banerjee

Publisher: CRC Press

Published: 2014-02-07

Total Pages: 278

ISBN-13: 1439854513

DOWNLOAD EBOOK →

Almost every year, a new book on mathematical modeling is published, so, why another? The answer springs directly from the fact that it is very rare to find a book that covers modeling with all types of differential equations in one volume. Until now. Mathematical Modeling: Models, Analysis and Applications covers modeling with all kinds of differential equations, namely ordinary, partial, delay, and stochastic. The book also contains a chapter on discrete modeling, consisting of differential equations, making it a complete textbook on this important skill needed for the study of science, engineering, and social sciences. More than just a textbook, this how-to guide presents tools for mathematical modeling and analysis. It offers a wide-ranging overview of mathematical ideas and techniques that provide a number of effective approaches to problem solving. Topics covered include spatial, delayed, and stochastic modeling. The text provides real-life examples of discrete and continuous mathematical modeling scenarios. MATLAB® and Mathematica® are incorporated throughout the text. The examples and exercises in each chapter can be used as problems in a project. Since mathematical modeling involves a diverse range of skills and tools, the author focuses on techniques that will be of particular interest to engineers, scientists, and others who use models of discrete and continuous systems. He gives students a foundation for understanding and using the mathematics that is the basis of computers, and therefore a foundation for success in engineering and science streams.

Differential Equations

Differential Equations PDF

Author: Courtney Brown

Publisher: SAGE

Published: 2007-05-18

Total Pages: 121

ISBN-13: 1412941083

DOWNLOAD EBOOK →

'Differential Equations: A Modeling Approach' explains the mathematics and theory of differential equations. Graphical methods of analysis are emphasized over formal proofs, making the text even more accessible for newcomers to the subject matter.

Modeling Differential Equations in Biology

Modeling Differential Equations in Biology PDF

Author: Clifford Henry Taubes

Publisher: Cambridge University Press

Published: 2008-01-17

Total Pages: 526

ISBN-13: 1316582787

DOWNLOAD EBOOK →

Based on a very successful one-semester course taught at Harvard, this text teaches students in the life sciences how to use differential equations to help their research. It needs only a semester's background in calculus. Ideas from linear algebra and partial differential equations that are most useful to the life sciences are introduced as needed, and in the context of life science applications, are drawn from real, published papers. It also teaches students how to recognize when differential equations can help focus research. A course taught with this book can replace the standard course in multivariable calculus that is more usually suited to engineers and physicists.