Modelling and Controlling of Behaviour for Autonomous Mobile Robots

Modelling and Controlling of Behaviour for Autonomous Mobile Robots PDF

Author: Hendrik Skubch

Publisher: Springer Science & Business Media

Published: 2012-11-27

Total Pages: 264

ISBN-13: 3658008113

DOWNLOAD EBOOK →

As research progresses, it enables multi-robot systems to be used in more and more complex and dynamic scenarios. Hence, the question arises how different modelling and reasoning paradigms can be utilised to describe the intended behaviour of a team and execute it in a robust and adaptive manner. Hendrik Skubch presents a solution, ALICA (A Language for Interactive Cooperative Agents) which combines modelling techniques drawn from different paradigms in an integrative fashion. Hierarchies of finite state machines are used to structure the behaviour of the team such that temporal and causal relationships can be expressed. Utility functions weigh different options against each other and assign agents to different tasks. Finally, non-linear constraint satisfaction and optimisation problems are integrated, allowing for complex cooperative behaviour to be specified in a concise, theoretically well-founded manner.

Robot Behaviour

Robot Behaviour PDF

Author: Ulrich Nehmzow

Publisher: Springer Science & Business Media

Published: 2008-12-18

Total Pages: 261

ISBN-13: 1848003978

DOWNLOAD EBOOK →

Robots have evolved impressively since the 3-D manipulator built by C.W. K- ward (1957), the two little electromechanical turtles Elmer and Elsie [Walter, 1950, Walter, 1951], and the ?rst mobile robots controlled by comp- ers, Shakey [Nilsson, 1984], CART [Moravec, 1979, Moravec, 1983], and - lare [Giralt et al., 1979]. Since then, we have seen industrial robot manipu- tors working in car factories, automatic guided vehicles moving heavy loads along pre-de?ned routes, human-remotely-operated robots neutralising bombs, and even semi-autonomous robots, like Sojourner, going to Mars and moving from one position to another commanded from Earth. Robots will go further and further in our society. However, there is still a kind of robot that has not completely taken off so far: autonomous robots. Autonomy depends upon working without human supervision for a considerable amount of time, taking independent decisions, adapting to new challenges in dynamic environments, interacting with other systems and humans, and so on. Research on autonomy is highly motivated by the expectations of having robots that can work with us and for us in everyday environments, assisting us at home or work, acting as servants and companions to help us in the execution of different tasks, so that we can have more spare time and a better quality of life.

Autonomous Mobile Robots

Autonomous Mobile Robots PDF

Author: Frank L. Lewis

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 438

ISBN-13: 1351837117

DOWNLOAD EBOOK →

It has long been the goal of engineers to develop tools that enhance our ability to do work, increase our quality of life, or perform tasks that are either beyond our ability, too hazardous, or too tedious to be left to human efforts. Autonomous mobile robots are the culmination of decades of research and development, and their potential is seemingly unlimited. Roadmap to the Future Serving as the first comprehensive reference on this interdisciplinary technology, Autonomous Mobile Robots: Sensing, Control, Decision Making, and Applications authoritatively addresses the theoretical, technical, and practical aspects of the field. The book examines in detail the key components that form an autonomous mobile robot, from sensors and sensor fusion to modeling and control, map building and path planning, and decision making and autonomy, and to the final integration of these components for diversified applications. Trusted Guidance A duo of accomplished experts leads a team of renowned international researchers and professionals who provide detailed technical reviews and the latest solutions to a variety of important problems. They share hard-won insight into the practical implementation and integration issues involved in developing autonomous and open robotic systems, along with in-depth examples, current and future applications, and extensive illustrations. For anyone involved in researching, designing, or deploying autonomous robotic systems, Autonomous Mobile Robots is the perfect resource.

Wheeled Mobile Robotics

Wheeled Mobile Robotics PDF

Author: Gregor Klancar

Publisher: Butterworth-Heinemann

Published: 2017-02-02

Total Pages: 502

ISBN-13: 0128042389

DOWNLOAD EBOOK →

Wheeled Mobile Robotics: From Fundamentals Towards Autonomous Systemscovers the main topics from the wide area of mobile robotics, explaining all applied theory and application. The book gives the reader a good foundation, enabling them to continue to more advanced topics. Several examples are included for better understanding, many of them accompanied by short MATLAB® script code making it easy to reuse in practical work. The book includes several examples of discussed methods and projects for wheeled mobile robots and some advanced methods for their control and localization. It is an ideal resource for those seeking an understanding of robotics, mechanics, and control, and for engineers and researchers in industrial and other specialized research institutions in the field of wheeled mobile robotics. Beginners with basic math knowledge will benefit from the examples, and engineers with an understanding of basic system theory and control will find it easy to follow the more demanding fundamental parts and advanced methods explained. Offers comprehensive coverage of the essentials of the field that are suitable for both academics and practitioners Includes several examples of the application of algorithms in simulations and real laboratory projects Presents foundation in mobile robotics theory before continuing with more advanced topics Self-sufficient to beginner readers, covering all important topics in the mobile robotics field Contains specific topics on modeling, control, sensing, path planning, localization, design architectures, and multi-agent systems

Autonomous Robots

Autonomous Robots PDF

Author: Farbod Fahimi

Publisher: Springer Science & Business Media

Published: 2008-10-25

Total Pages: 349

ISBN-13: 0387095381

DOWNLOAD EBOOK →

It is at least two decades since the conventional robotic manipulators have become a common manufacturing tool for different industries, from automotive to pharmaceutical. The proven benefits of utilizing robotic manipulators for manufacturing in different industries motivated scientists and researchers to try to extend the applications of robots to many other areas by inventing several new types of robots other than conventional manipulators. The new types of robots can be categorized in two groups; redundant (and hyper-redundant) manipulators, and mobile (ground, marine, and aerial) robots. These groups of robots, known as advanced robots, have more freedom for their mobility, which allows them to do tasks that the conventional manipulators cannot do. Engineers have taken advantage of the extra mobility of the advanced robots to make them work in constrained environments, ranging from limited joint motions for redundant (or hyper-redundant) manipulators to obstacles in the way of mobile (ground, marine, and aerial) robots. Since these constraints usually depend on the work environment, they are variable. Engineers have had to invent methods to allow the robots to deal with a variety of constraints automatically. A robot that is equipped with those methods is called an Autonomous Robot. Autonomous Robots: Kinematics, Path Planning, and Control covers the kinematics and dynamic modeling/analysis of Autonomous Robots, as well as the methods suitable for their control. The text is suitable for mechanical and electrical engineers who want to familiarize themselves with methods of modeling/analysis/control that have been proven efficient through research.

Autonomous Mobile Robots and Multi-Robot Systems

Autonomous Mobile Robots and Multi-Robot Systems PDF

Author: Eugene Kagan

Publisher: John Wiley & Sons

Published: 2019-12-16

Total Pages: 340

ISBN-13: 1119212863

DOWNLOAD EBOOK →

Offers a theoretical and practical guide to the communication and navigation of autonomous mobile robots and multi-robot systems This book covers the methods and algorithms for the navigation, motion planning, and control of mobile robots acting individually and in groups. It addresses methods of positioning in global and local coordinates systems, off-line and on-line path-planning, sensing and sensors fusion, algorithms of obstacle avoidance, swarming techniques and cooperative behavior. The book includes ready-to-use algorithms, numerical examples and simulations, which can be directly implemented in both simple and advanced mobile robots, and is accompanied by a website hosting codes, videos, and PowerPoint slides Autonomous Mobile Robots and Multi-Robot Systems: Motion-Planning, Communication and Swarming consists of four main parts. The first looks at the models and algorithms of navigation and motion planning in global coordinates systems with complete information about the robot’s location and velocity. The second part considers the motion of the robots in the potential field, which is defined by the environmental states of the robot's expectations and knowledge. The robot's motion in the unknown environments and the corresponding tasks of environment mapping using sensed information is covered in the third part. The fourth part deals with the multi-robot systems and swarm dynamics in two and three dimensions. Provides a self-contained, theoretical guide to understanding mobile robot control and navigation Features implementable algorithms, numerical examples, and simulations Includes coverage of models of motion in global and local coordinates systems with and without direct communication between the robots Supplemented by a companion website offering codes, videos, and PowerPoint slides Autonomous Mobile Robots and Multi-Robot Systems: Motion-Planning, Communication and Swarming is an excellent tool for researchers, lecturers, senior undergraduate and graduate students, and engineers dealing with mobile robots and related issues.

Plan-Based Control of Robotic Agents

Plan-Based Control of Robotic Agents PDF

Author: Michael Beetz

Publisher: Springer

Published: 2003-07-01

Total Pages: 199

ISBN-13: 3540363815

DOWNLOAD EBOOK →

Robotic agents, such as autonomous office couriers or robot tourguides, must be both reliable and efficient. Thus, they have to flexibly interleave their tasks, exploit opportunities, quickly plan their course of action, and, if necessary, revise their intended activities. This book makes three major contributions to improving the capabilities of robotic agents: - first, a plan representation method is introduced which allows for specifying flexible and reliable behavior - second, probabilistic hybrid action models are presented as a realistic causal model for predicting the behavior generated by modern concurrent percept-driven robot plans - third, the system XFRMLEARN capable of learning structured symbolic navigation plans is described in detail.

Advances in Intelligent Autonomous Systems

Advances in Intelligent Autonomous Systems PDF

Author: S.G. Tzafestas

Publisher: Springer Science & Business Media

Published: 1999-03-31

Total Pages: 562

ISBN-13: 9780792355809

DOWNLOAD EBOOK →

This collection of twenty-three timely contributions covers a well-selected repertory of topics within the autonomous systems field. The book discusses a range of design, construction, control, and operation problems along with a multiplicity of well-established and novel solutions.

Wheeled Mobile Robot Control

Wheeled Mobile Robot Control PDF

Author: Nardênio Almeida Martins

Publisher: Springer Nature

Published: 2021-08-12

Total Pages: 209

ISBN-13: 3030779122

DOWNLOAD EBOOK →

This book focuses on the development and methodologies of trajectory control of differential-drive wheeled nonholonomic mobile robots. The methodologies are based on kinematic models (posture and configuration) and dynamic models, both subject to uncertainties and/or disturbances. The control designs are developed in rectangular coordinates obtained from the first-order sliding mode control in combination with the use of soft computing techniques, such as fuzzy logic and artificial neural networks. Control laws, as well as online learning and adaptation laws, are obtained using the stability analysis for both the developed kinematic and dynamic controllers, based on Lyapunov’s stability theory. An extension to the formation control with multiple differential-drive wheeled nonholonomic mobile robots in trajectory tracking tasks is also provided. Results of simulations and experiments are presented to verify the effectiveness of the proposed control strategies for trajectory tracking situations, considering the parameters of an industrial and a research differential-drive wheeled nonholonomic mobile robot, the PowerBot. Supplementary materials such as source codes and scripts for simulation and visualization of results are made available with the book.