Modeling Vapor-Liquid Equilibria

Modeling Vapor-Liquid Equilibria PDF

Author: Hasan Orbey

Publisher: Cambridge University Press

Published: 1998-05-28

Total Pages: 230

ISBN-13: 9780521620277

DOWNLOAD EBOOK →

Reviews the latest developments in a subject relevant to professionals involved in the simulation and design of chemical processes - includes disk of computer programs.

Vapor-Liquid Equilibria Using Unifac

Vapor-Liquid Equilibria Using Unifac PDF

Author: Aage Fredenslund

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 393

ISBN-13: 0444601503

DOWNLOAD EBOOK →

Vapor-Liquid Equilibria Using UNIFAC: A Group-Contribution Method focuses on the UNIFAC group-contribution method used in predicting quantitative information on the phase equilibria during separation by estimating activity coefficients. Drawing on tested vapor-liquid equilibrium data on which UNIFAC is based, it demonstrates through examples how the method may be used in practical engineering design calculations. Divided into nine chapters, this volume begins with a discussion of vapor and liquid phase nonidealities and how they are calculated in terms of fugacity and activity coefficients, respectively. It then introduces the reader to the UNIFAC method and how it works, the procedure used in establishing the parameters needed for the model, prediction of binary and multicomponent vapor-liquid equilibria for a large number of systems, the potential of UNIFAC for predicting liquid-liquid equilibria, and how UNIFAC can be used to solve practical distillation design problems. This book will benefit process design engineers who want to reliably predict phase equilibria for designing distillation columns and other separation processes.

Distillation

Distillation PDF

Author: Johann G. Stichlmair

Publisher: John Wiley & Sons

Published: 2021-05-19

Total Pages: 688

ISBN-13: 1119414687

DOWNLOAD EBOOK →

Distillation Principles and Practice Second Edition covers all the main aspects of distillation including the thermodynamics of vapor/liquid equilibrium, the principles of distillation, the synthesis of distillation processes, the design of the equipment, and the control of process operation. Most textbooks deal in detail with the principles and laws of distilling binary mixtures. When it comes to multi-component mixtures, they refer to computer software nowadays available. One of the special features of the second edition is a clear and easy understandable presentation of the principles and laws of ternary distillation. The right understanding of ternary distillation is the link to a better understanding of multi-component distillation. Ternary distillation is the basis for a conceptual process design, for separating azeotropic mixtures by using an entrainer, and for reactive distillation, which is a rapidly developing field of distillation. Another special feature of the book is the design of distillation equipment, i.e. tray columns and packed columns. In practice, empirical know-how is preferably used in many companies, often in form of empirical equations, which are not even dimensionally correct. The objective of the proposed book is the derivation of the relevant equations for column design based on first principles. The field of column design is permanently developing with respect to the type of equipment used and the know-how of two-phase flow and interfacial mass transfer.

Process Systems Engineering for Biofuels Development

Process Systems Engineering for Biofuels Development PDF

Author: Adrian Bonilla-Petriciolet

Publisher: John Wiley & Sons

Published: 2020-10-05

Total Pages: 381

ISBN-13: 1119580277

DOWNLOAD EBOOK →

A comprehensive overview of current developments and applications in biofuels production Process Systems Engineering for Biofuels Development brings together the latest and most cutting-edge research on the production of biofuels. As the first book specifically devoted to process systems engineering for the production of biofuels, Process Systems Engineering for Biofuels Development covers theoretical, computational and experimental issues in biofuels process engineering. Written for researchers and postgraduate students working on biomass conversion and sustainable process design, as well as industrial practitioners and engineers involved in process design, modeling and optimization, this book is an indispensable guide to the newest developments in areas including: Enzyme-catalyzed biodiesel production Process analysis of biodiesel production (including kinetic modeling, simulation and optimization) The use of ultrasonification in biodiesel production Thermochemical processes for biomass transformation to biofuels Production of alternative biofuels In addition to the comprehensive overview of the subject of biofuels found in the Introduction of the book, the authors of various chapters have provided extensive discussions of the production and separation of biofuels via novel applications and techniques.

Modelling Phase Equilibria

Modelling Phase Equilibria PDF

Author: Stanislaw Malanowski

Publisher: John Wiley & Sons

Published: 1992-05-29

Total Pages: 338

ISBN-13:

DOWNLOAD EBOOK →

Presents a rigorous development of thermodynamic laws of phase equilibria beginning with fundamental principles, accompanied by a short description of the mathematics vital to a clear understanding of basic concepts as well as the practical methods used to calculate phase equilibria. Offers excellent explanations of well-established thermodynamic tools and novel, state-of-the-art techniques representing real fluid behavior. Models covered are relevant to the modeling of nonelectrolyte mixtures over wide ranges of pressure, temperature, composition and molecular diversity.

Working Guide to Vapor-Liquid Phase Equilibria Calculations

Working Guide to Vapor-Liquid Phase Equilibria Calculations PDF

Author: Tarek Ahmed

Publisher: Gulf Professional Publishing

Published: 2009-08-27

Total Pages: 149

ISBN-13: 1856179028

DOWNLOAD EBOOK →

Working Guide to Vapor-Liquid Phase Equilibria Calculations offers a practical guide for calculations of vapor-phase equilibria. The book begins by introducing basic concepts such as vapor pressure, vapor pressure charts, equilibrium ratios, and flash calculations. It then presents methods for predicting the equilibrium ratios of hydrocarbon mixtures: Wilson's correlation, Standing's correlation, convergence pressure method, and Whitson and Torp correlation. The book describes techniques to determine equilibrium ratios of the plus fraction, including Campbell's method, Winn's method, and Katz's method. The remaining chapters cover the solution of phase equilibrium problems in reservoir and process engineering; developments in the field of empirical cubic equations of state (EOS) and their applications in petroleum engineering; and the splitting of the plus fraction for EOS calculations. Includes explanations of formulas Step by step calculations Provides examples and solutions

Liquid-liquid Equilibria

Liquid-liquid Equilibria PDF

Author: Josef P. Novák

Publisher: Elsevier Publishing Company

Published: 1987

Total Pages: 334

ISBN-13:

DOWNLOAD EBOOK →

While a satisfactory description of liquid-vapour equilibria in binary and multi-component systems had been developed by the end of the fifties, a similar situation has only been attained for liquid-liquid equilibria in the last ten years. There are several reasons for this, the most important of which is the necessity to employ more complex thermodynamic models for a quantitative description of liquid-liquid equilibria. These models require very sophisticated calculation techniques that cannot be carried out without the assistance of a computer. The authors have attempted to provide a theoretical description of liquid-liquid equilibria at a level permitting routine chemical engineering applications similar to those common for liquid-vapour equilibria. Consequently, a great deal of attention is paid to the calculation of parameters for heterogeneous and homogeneous binary systems, and to the qualitative evaluation of the suitability of the most frequently used thermodynamic models.