Modeling transport properties and electrochemical performance of hierarchically structured lithium-ion battery cathodes using resistor networks and mathematical half-cell models

Modeling transport properties and electrochemical performance of hierarchically structured lithium-ion battery cathodes using resistor networks and mathematical half-cell models PDF

Author: Birkholz, Oleg

Publisher: KIT Scientific Publishing

Published: 2022-10-05

Total Pages: 246

ISBN-13: 373151172X

DOWNLOAD EBOOK →

Hierarchically structured active materials in electrodes of lithium-ion cells are promising candidates for increasing gravimetric energy density and improving rate capability of the system. To investigate the influence of cathode structures on the performance of the whole cell, efficient tools for calculating effective transport properties of granular systems are developed and their influence on the electrochemical performance is investigated in specially adapted cell models.

Dynamic Model-based Analysis of Oxygen Reduction Reaction in Gas Diffusion Electrodes

Dynamic Model-based Analysis of Oxygen Reduction Reaction in Gas Diffusion Electrodes PDF

Author: Röhe, Maximilian

Publisher: KIT Scientific Publishing

Published: 2024-01-09

Total Pages: 178

ISBN-13: 3731512343

DOWNLOAD EBOOK →

In this work, the first simulation model of oxygen depolarized cathodes (ODC), which are silver catalyst-based gas diffusion electrodes, is presented that considers the phase equilibrium of the gas-liquid interface and structure-related inhomogeneities in electrolyte distribution. By means of the model it has been identified that mass transport of water and ions in the liquid phase is a crucial factor for electrode performance and how it is influenced by the electrode structure.

Multiscale Modeling of Curing and Crack Propagation in Fiber-Reinforced Thermosets

Multiscale Modeling of Curing and Crack Propagation in Fiber-Reinforced Thermosets PDF

Author: Schöller, Lukas

Publisher: KIT Scientific Publishing

Published: 2024-03-15

Total Pages: 230

ISBN-13: 3731513404

DOWNLOAD EBOOK →

During the production of fiber-reinforced thermosets, the resin material undergoes a reaction that can lead to damage. A two-stage polymerization reaction is modeled using molecular dynamics and evaluations of the system including a fiber surface are performed. In addition, a phase-field model for crack propagation in heterogeneous systems is derived. This model is able to predict crack growth where established models fail. Finally, the model is used to predict crack formation during curing.

Development of NbN based Kinetic Inductance Detectors on sapphire and diamond substrates for fusion plasma polarimetric diagnostics

Development of NbN based Kinetic Inductance Detectors on sapphire and diamond substrates for fusion plasma polarimetric diagnostics PDF

Author: Mazzocchi, Francesco

Publisher: KIT Scientific Publishing

Published: 2022-07-01

Total Pages: 212

ISBN-13: 3731511819

DOWNLOAD EBOOK →

This work aimed at designing, studying and producing the first prototypes of KIDs tailored for fusion plasma polarimetric diagnostics. Diamond was considered for the first time as substrate material for low-temperature superconducting detectors given its unmatched optical, radiation hardness and thermal qualities, properties necessary for working environments potentially saturated with radiation. This work represents a first step toward the optimization and final application of this technology.

Mathematical Modeling of Lithium Batteries

Mathematical Modeling of Lithium Batteries PDF

Author: Krishnan S. Hariharan

Publisher: Springer

Published: 2017-12-28

Total Pages: 211

ISBN-13: 3319035274

DOWNLOAD EBOOK →

This book is unique to be the only one completely dedicated for battery modeling for all components of battery management system (BMS) applications. The contents of this book compliment the multitude of research publications in this domain by providing coherent fundamentals. An explosive market of Li ion batteries has led to aggressive demand for mathematical models for battery management systems (BMS). Researchers from multi-various backgrounds contribute from their respective background, leading to a lateral growth. Risk of this runaway situation is that researchers tend to use an existing method or algorithm without in depth knowledge of the cohesive fundamentals—often misinterpreting the outcome. It is worthy to note that the guiding principles are similar and the lack of clarity impedes a significant advancement. A repeat or even a synopsis of all the applications of battery modeling albeit redundant, would hence be a mammoth task, and cannot be done in a single offering. The authors believe that a pivotal contribution can be made by explaining the fundamentals in a coherent manner. Such an offering would enable researchers from multiple domains appreciate the bedrock principles and forward the frontier. Battery is an electrochemical system, and any level of understanding cannot ellipse this premise. The common thread that needs to run across—from detailed electrochemical models to algorithms used for real time estimation on a microchip—is that it be physics based. Build on this theme, this book has three parts. Each part starts with developing a framework—often invoking basic principles of thermodynamics or transport phenomena—and ends with certain verified real time applications. The first part deals with electrochemical modeling and the second with model order reduction. Objective of a BMS is estimation of state and health, and the third part is dedicated for that. Rules for state observers are derived from a generic Bayesian framework, and health estimation is pursued using machine learning (ML) tools. A distinct component of this book is thorough derivations of the learning rules for the novel ML algorithms. Given the large-scale application of ML in various domains, this segment can be relevant to researchers outside BMS domain as well. The authors hope this offering would satisfy a practicing engineer with a basic perspective, and a budding researcher with essential tools on a comprehensive understanding of BMS models.

Physically based Impedance Modelling of Lithium-Ion Cells

Physically based Impedance Modelling of Lithium-Ion Cells PDF

Author: Illig, Joerg

Publisher: KIT Scientific Publishing

Published: 2014-09-19

Total Pages: 231

ISBN-13: 3731502461

DOWNLOAD EBOOK →

In this book, a new procedure to analyze lithium-ion cells is introduced. The cells are disassembled to analyze their components in experimental cell housings. Then, Electrochemical Impedance Spectroscopy, time domain measurements and the Distribution function of Relaxation Times are applied to obtain a deep understanding of the relevant loss processes. This procedure yields a notable surplus of information about the electrode contributions to the overall internal resistance of the cell.

Long-Term Health State Estimation of Energy Storage Lithium-Ion Battery Packs

Long-Term Health State Estimation of Energy Storage Lithium-Ion Battery Packs PDF

Author: Qi Huang

Publisher: Springer Nature

Published: 2023-08-18

Total Pages: 101

ISBN-13: 9819953448

DOWNLOAD EBOOK →

This book investigates in detail long-term health state estimation technology of energy storage systems, assessing its potential use to replace common filtering methods that constructs by equivalent circuit model with a data-driven method combined with electrochemical modeling, which can reflect the battery internal characteristics, the battery degradation modes, and the battery pack health state. Studies on long-term health state estimation have attracted engineers and scientists from various disciplines, such as electrical engineering, materials, automation, energy, and chemical engineering. Pursuing a holistic approach, the book establishes a fundamental framework for this topic, while emphasizing the importance of extraction for health indicators and the significant influence of electrochemical modeling and data-driven issues in the design and optimization of health state estimation in energy storage systems. The book is intended for undergraduate and graduate students who are interested in new energy measurement and control technology, researchers investigating energy storage systems, and structure/circuit design engineers working on energy storage cell and pack.

Modeling and State Estimation of Automotive Lithium-Ion Batteries

Modeling and State Estimation of Automotive Lithium-Ion Batteries PDF

Author: Shunli Wang

Publisher: CRC Press

Published: 2024-07-16

Total Pages: 145

ISBN-13: 1040046754

DOWNLOAD EBOOK →

This book aims to evaluate and improve the state of charge (SOC) and state of health (SOH) of automotive lithium-ion batteries. The authors first introduce the basic working principle and dynamic test characteristics of lithium-ion batteries. They present the dynamic transfer model, compare it with the traditional second-order reserve capacity (RC) model, and demonstrate the advantages of the proposed new model. In addition, they propose the chaotic firefly optimization algorithm and demonstrate its effectiveness in improving the accuracy of SOC and SOH estimation through theoretical and experimental analysis. The book will benefit researchers and engineers in the new energy industry and provide students of science and engineering with some innovative aspects of battery modeling.

Electrochemical Modeling in the Context of Production of Lithium-Based Batteries

Electrochemical Modeling in the Context of Production of Lithium-Based Batteries PDF

Author: Vincent Laue

Publisher:

Published: 2021-01-29

Total Pages: 129

ISBN-13: 9783832552411

DOWNLOAD EBOOK →

This book addresses the two most prominent shortcomings of a commonly used physics-based electrochemical model of a lithium-ion battery, namely ambiguous identifiability, and coarse representation of the electrode microstructure. The first shortcoming is tackled with an enhanced parametrization routine and the second with surrogate models, derived from a full-3D microstructure model. All models and results are related to the production of lithium-ion battery cells.