Modeling of Microscale Transport in Biological Processes

Modeling of Microscale Transport in Biological Processes PDF

Author: Sid M. Becker

Publisher: Academic Press

Published: 2016-12-27

Total Pages: 396

ISBN-13: 0128046198

DOWNLOAD EBOOK →

Modeling of Microscale Transport in Biological Processes provides a compendium of recent advances in theoretical and computational modeling of biotransport phenomena at the microscale. The simulation strategies presented range from molecular to continuum models and consider both numerical and exact solution method approaches to coupled systems of equations. The biological processes covered in this book include digestion, molecular transport, microbial swimming, cilia mediated flow, microscale heat transfer, micro-vascular flow, vesicle dynamics, transport through bio-films and bio-membranes, and microscale growth dynamics. The book is written for an advanced academic research audience in the fields of engineering (encompassing biomedical, chemical, biological, mechanical, and electrical), biology and mathematics. Although written for, and by, expert researchers, each chapter provides a strong introductory section to ensure accessibility to readers at all levels. Features recent developments in theoretical and computational modeling for clinical researchers and engineers Furthers researcher understanding of fluid flow in biological media and focuses on biofluidics at the microscale Includes chapters expertly authored by internationally recognized authorities in the fundamental and applied fields that are associated with microscale transport in living media

Principles and Models of Biological Transport

Principles and Models of Biological Transport PDF

Author: Morton H. Friedman

Publisher: Springer Science & Business Media

Published: 2008-12-15

Total Pages: 520

ISBN-13: 0387792406

DOWNLOAD EBOOK →

Focus, Organization, and Content This book, like the first edition, deals with the mass transport processes that take place in living systems, with a focus on the normal behavior of eukaryotic cells and the - ganisms they constitute, in their normal physiological environment. As a consequence of this focus, the structure and content of the book differ from those of traditional transport texts. We do not start with the engineering principles of mass transport (which are well presented elsewhere) and then seek biological applications of these principles; rather, we begin with the biological processes themselves, and then - velop the models and analytical tools that are needed to describe them. This approach has several consequences. First of all, it drives the content of the text in a direction distinctively different from conventional transport texts. This is - cause the tools and models needed to describe complex biological processes are often different from those employed to describe more well-characterized inanimate systems. Many biological processes must still be described phenomenologically, using me- odologies like nonequilibrium thermodynamics. Simple electrical analogs employing a paucity of parameters can be more useful for characterization and prediction than complex theories based on the behavior of more well-defined systems on a laboratory bench. By allowing the biology to drive the choice of analysis tools and models, the latter are consistently presented in the context of real biological systems, and analysis and biology are interwoven throughout.

Modeling of Mass Transport Processes in Biological Media

Modeling of Mass Transport Processes in Biological Media PDF

Author: Sid M. Becker

Publisher: Academic Press

Published: 2022-08-24

Total Pages: 618

ISBN-13: 0323857418

DOWNLOAD EBOOK →

Modeling of Mass Transport Processes in Biological Media focuses on applications of mass transfer relevant to biomedical processes and technology—fields that require quantitative mechanistic descriptions of the delivery of molecules and drugs. This book features recent advances and developments in biomedical therapies with a focus on the associated theoretical and mathematical techniques necessary to predict mass transfer in biological systems. The book is authored by over 50 established researchers who are internationally recognized as leaders in their fields. Each chapter contains a comprehensive introductory section for those new to the field, followed by recent modeling developments motivated by empirical experimental observation. Offering a unique opportunity for the reader to access recent developments from technical, theoretical, and engineering perspectives, this book is ideal for graduate and postdoctoral researchers in academia as well as experienced researchers in biomedical industries. Offers updated information related to advanced techniques and fundamental knowledge, particularly advances in computer-based diagnostics and treatment and numerical simulations Provides a bridge between well-established theories and the latest developments in the field Coverage includes dialysis, inert solute transport (insulin), electrokinetic transport, cellular molecular uptake, transdermal drug delivery and respiratory therapies

Transport in Biological Media

Transport in Biological Media PDF

Author: Sid M. Becker

Publisher: Newnes

Published: 2013-05-21

Total Pages: 575

ISBN-13: 0123978491

DOWNLOAD EBOOK →

Transport in Biological Media is a solid resource of mathematical models for researchers across a broad range of scientific and engineering problems such as the effects of drug delivery, chemotherapy, or insulin intake to interpret transport experiments in areas of cutting edge biological research. A wide range of emerging theoretical and experimental mathematical methodologies are offered by biological topic to appeal to individual researchers to assist them in solving problems in their specific area of research. Researchers in biology, biophysics, biomathematics, chemistry, engineers and clinical fields specific to transport modeling will find this resource indispensible. Provides detailed mathematical model development to interpret experiments and provides current modeling practices Provides a wide range of biological and clinical applications Includes physiological descriptions of models

Heat Transfer and Fluid Flow in Biological Processes

Heat Transfer and Fluid Flow in Biological Processes PDF

Author: Sid M. Becker

Publisher: Academic Press

Published: 2014-12-31

Total Pages: 428

ISBN-13: 0124079008

DOWNLOAD EBOOK →

Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. Provides a wide range of biological and clinical applications of fluid flow and heat transfer in biomedical technology Covers topics such as electrokinetic transport, electroporation of cells and tissue dialysis, inert solute transport (insulin), thermal ablation of cancerous tissue, respiratory therapies, and associated medical technologies Reviews the most recent advances in modeling techniques

Microfluidics and Microscale Transport Processes

Microfluidics and Microscale Transport Processes PDF

Author: Suman Chakraborty

Publisher: CRC Press

Published: 2012-10-04

Total Pages: 368

ISBN-13: 143989924X

DOWNLOAD EBOOK →

The advancements in micro- and nano-fabrication techniques, especially in the last couple of decades, have led research communities, over the world, to invest unprecedented levels of attention on the science and technology of micro- and nano-scale devices and the concerned applications. With an intense focus on micro- and nanotechnology from a fluidic perspective, Microfluidics and Microscale Transport Processes provides a broad review of advances in this field. A comprehensive compendium of key indicators to recent developments in some very active research topics in microscale transport processes, it supplies an optimal balance between discussions of concrete applications and development of fundamental understanding. The chapters discuss a wide range of issues in the sub-domains of capillary transport, fluidic resistance, electrokinetics, substrate modification, rotational microfluidics, and the applications of the phenomena of these sub-domains in diverse situations ranging from non-biological to biological ones like DNA hybridization and cellular biomicrofluidics. The book also addresses a generic problem of particle transport in nanoscale colloidal suspensions and includes a chapter on Lattice-Boltzmann methods for phase-changing problems which represents a generic particle based approach that may be useful to address many microfluidic problems of interdisciplinary relevance.

Transport Phenomena in Biological Systems

Transport Phenomena in Biological Systems PDF

Author: George A. Truskey

Publisher: Prentice Hall

Published: 2009

Total Pages: 889

ISBN-13: 0131569880

DOWNLOAD EBOOK →

For one-semester, advanced undergraduate/graduate courses in Biotransport Engineering. Presenting engineering fundamentals and biological applications in a unified way, this text provides students with the skills necessary to develop and critically analyze models of biological transport and reaction processes. It covers topics in fluid mechanics, mass transport, and biochemical interactions, with engineering concepts motivated by specific biological problems.

Multiscale Modeling in Biomechanics and Mechanobiology

Multiscale Modeling in Biomechanics and Mechanobiology PDF

Author: Suvranu De

Publisher: Springer

Published: 2014-10-10

Total Pages: 287

ISBN-13: 1447165993

DOWNLOAD EBOOK →

Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics and mechanobiology, and introduces a mathematical framework and computational techniques paramount to creating predictive multiscale models. Biomechanics involves the study of the interactions of physical forces with biological systems at all scales – including molecular, cellular, tissue and organ scales. The emerging field of mechanobiology focuses on the way that cells produce and respond to mechanical forces – bridging the science of mechanics with the disciplines of genetics and molecular biology. Linking disparate spatial and temporal scales using computational techniques is emerging as a key concept in investigating some of the complex problems underlying these disciplines. Providing an invaluable field manual for graduate students and researchers of theoretical and computational modelling in biology, this book is also intended for readers interested in biomedical engineering, applied mechanics and mathematical biology.

Transport Processes at Fluidic Interfaces

Transport Processes at Fluidic Interfaces PDF

Author: Dieter Bothe

Publisher: Birkhäuser

Published: 2017-07-13

Total Pages: 677

ISBN-13: 3319566024

DOWNLOAD EBOOK →

There are several physico-chemical processes that determine the behavior of multiphase fluid systems – e.g., the fluid dynamics in the different phases and the dynamics of the interface(s), mass transport between the fluids, adsorption effects at the interface, and transport of surfactants on the interface – and result in heterogeneous interface properties. In general, these processes are strongly coupled and local properties of the interface play a crucial role. A thorough understanding of the behavior of such complex flow problems must be based on physically sound mathematical models, which especially account for the local processes at the interface. This book presents recent findings on the rigorous derivation and mathematical analysis of such models and on the development of numerical methods for direct numerical simulations. Validation results are based on specifically designed experiments using high-resolution experimental techniques. A special feature of this book is its focus on an interdisciplinary research approach combining Applied Analysis, Numerical Mathematics, Interface Physics and Chemistry, as well as relevant research areas in the Engineering Sciences. The contributions originated from the joint interdisciplinary research projects in the DFG Priority Programme SPP 1506 “Transport Processes at Fluidic Interfaces.”