Modeling, Design, and Simulation of Systems with Uncertainties

Modeling, Design, and Simulation of Systems with Uncertainties PDF

Author: Andreas Rauh

Publisher: Springer Science & Business Media

Published: 2011-06-06

Total Pages: 356

ISBN-13: 3642159567

DOWNLOAD EBOOK →

To describe the true behavior of most real-world systems with sufficient accuracy, engineers have to overcome difficulties arising from their lack of knowledge about certain parts of a process or from the impossibility of characterizing it with absolute certainty. Depending on the application at hand, uncertainties in modeling and measurements can be represented in different ways. For example, bounded uncertainties can be described by intervals, affine forms or general polynomial enclosures such as Taylor models, whereas stochastic uncertainties can be characterized in the form of a distribution described, for example, by the mean value, the standard deviation and higher-order moments. The goal of this Special Volume on Modeling, Design, and Simulation of Systems with Uncertainties is to cover modern methods for dealing with the challenges presented by imprecise or unavailable information. All contributions tackle the topic from the point of view of control, state and parameter estimation, optimization and simulation. Thematically, this volume can be divided into two parts. In the first we present works highlighting the theoretic background and current research on algorithmic approaches in the field of uncertainty handling, together with their reliable software implementation. The second part is concerned with real-life application scenarios from various areas including but not limited to mechatronics, robotics, and biomedical engineering.

System Design, Modeling, and Simulation

System Design, Modeling, and Simulation PDF

Author: Claudius Ptolemaeus

Publisher: Lee & Seshia

Published: 2013-09-27

Total Pages: 687

ISBN-13: 1304421066

DOWNLOAD EBOOK →

This book is a definitive introduction to models of computation for the design of complex, heterogeneous systems. It has a particular focus on cyber-physical systems, which integrate computing, networking, and physical dynamics. The book captures more than twenty years of experience in the Ptolemy Project at UC Berkeley, which pioneered many design, modeling, and simulation techniques that are now in widespread use. All of the methods covered in the book are realized in the open source Ptolemy II modeling framework and are available for experimentation through links provided in the book. The book is suitable for engineers, scientists, researchers, and managers who wish to understand the rich possibilities offered by modern modeling techniques. The goal of the book is to equip the reader with a breadth of experience that will help in understanding the role that such techniques can play in design.

Modeling, Design and Simulation of Systems

Modeling, Design and Simulation of Systems PDF

Author: Mohamed Sultan Mohamed Ali

Publisher: Springer

Published: 2017-08-24

Total Pages: 727

ISBN-13: 9811064636

DOWNLOAD EBOOK →

This two-volume set CCIS 751 and CCIS 752 constitutes the proceedings of the 17th Asia Simulation Conference, AsiaSim 2017, held in Malacca, Malaysia, in August/September 2017. The 124 revised full papers presented in this two-volume set were carefully reviewed and selected from 267 submissions. The papers contained in these proceedings address challenging issues in modeling and simulation in various fields such as embedded systems; symbiotic simulation; agent-based simulation; parallel and distributed simulation; high performance computing; biomedical engineering; big data; energy, society and economics; medical processes; simulation language and software; visualization; virtual reality; modeling and Simulation for IoT; machine learning; as well as the fundamentals and applications of computing.

Numerical Simulation-based Design

Numerical Simulation-based Design PDF

Author: Xu Han

Publisher:

Published: 2020

Total Pages: 258

ISBN-13: 9789811030918

DOWNLOAD EBOOK →

This book focuses on numerical simulation-based design theory and methods in mechanical engineering. The simulation-based design of mechanical equipment involves considerable scientific challenges including extremely complex systems, extreme working conditions, multi-source uncertainties, multi-physics coupling, and large-scale computation. In order to overcome these technical difficulties, this book systematically elaborates upon the advanced design methods, covering high-fidelity simulation modeling, rapid structural analysis, multi-objective design optimization, uncertainty analysis and optimization, which can effectively improve the design accuracy, efficiency, multi-functionality and reliability of complicated mechanical structures. This book is primarily intended for researchers, engineers and postgraduate students in mechanical engineering, especially in mechanical design, numerical simulation and engineering optimization.

Uncertainty Modeling for Engineering Applications

Uncertainty Modeling for Engineering Applications PDF

Author: Flavio Canavero

Publisher: Springer

Published: 2018-12-29

Total Pages: 184

ISBN-13: 3030048705

DOWNLOAD EBOOK →

This book provides an overview of state-of-the-art uncertainty quantification (UQ) methodologies and applications, and covers a wide range of current research, future challenges and applications in various domains, such as aerospace and mechanical applications, structure health and seismic hazard, electromagnetic energy (its impact on systems and humans) and global environmental state change. Written by leading international experts from different fields, the book demonstrates the unifying property of UQ theme that can be profitably adopted to solve problems of different domains. The collection in one place of different methodologies for different applications has the great value of stimulating the cross-fertilization and alleviate the language barrier among areas sharing a common background of mathematical modeling for problem solution. The book is designed for researchers, professionals and graduate students interested in quantitatively assessing the effects of uncertainties in their fields of application. The contents build upon the workshop “Uncertainty Modeling for Engineering Applications” (UMEMA 2017), held in Torino, Italy in November 2017.

Process Control

Process Control PDF

Author: B. Wayne Bequette

Publisher: Prentice Hall Professional

Published: 2003

Total Pages: 794

ISBN-13:

DOWNLOAD EBOOK →

Master process control hands on, through practical examples and MATLAB(R) simulations This is the first complete introduction to process control that fully integrates software tools--enabling professionals and students to master critical techniques hands on, through computer simulations based on the popular MATLAB environment. Process Control: Modeling, Design, and Simulation teaches the field's most important techniques, behaviors, and control problems through practical examples, supplemented by extensive exercises--with detailed derivations, relevant software files, and additional techniques available on a companion Web site. Coverage includes: Fundamentals of process control and instrumentation, including objectives, variables, and block diagrams Methodologies for developing dynamic models of chemical processes Dynamic behavior of linear systems: state space models, transfer function-based models, and more Feedback control; proportional, integral, and derivative (PID) controllers; and closed-loop stability analysis Frequency response analysis techniques for evaluating the robustness of control systems Improving control loop performance: internal model control (IMC), automatic tuning, gain scheduling, and enhancements to improve disturbance rejection Split-range, selective, and override strategies for switching among inputs or outputs Control loop interactions and multivariable controllers An introduction to model predictive control (MPC) Bequette walks step by step through the development of control instrumentation diagrams for an entire chemical process, reviewing common control strategies for individual unit operations, then discussing strategies for integrated systems. The book also includes 16 learning modules demonstrating how to use MATLAB and SIMULINK to solve several key control problems, ranging from robustness analyses to biochemical reactors, biomedical problems to multivariable control.

Dynamics Under Uncertainty: Modeling Simulation and Complexity

Dynamics Under Uncertainty: Modeling Simulation and Complexity PDF

Author: Dragan Pamučar

Publisher:

Published: 2021

Total Pages: 210

ISBN-13: 9783036515755

DOWNLOAD EBOOK →

The dynamics of systems have proven to be very powerful tools in understanding the behavior of different natural phenomena throughout the last two centuries. However, the attributes of natural systems are observed to deviate from their classical states due to the effect of different types of uncertainties. Actually, randomness and impreciseness are the two major sources of uncertainties in natural systems. Randomness is modeled by different stochastic processes and impreciseness could be modeled by fuzzy sets, rough sets, Dempster-Shafer theory, etc.

Uncertainty Quantification in Multiscale Materials Modeling

Uncertainty Quantification in Multiscale Materials Modeling PDF

Author: Yan Wang

Publisher: Woodhead Publishing Limited

Published: 2020-03-12

Total Pages: 604

ISBN-13: 0081029411

DOWNLOAD EBOOK →

Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.

Research Challenges in Modeling and Simulation for Engineering Complex Systems

Research Challenges in Modeling and Simulation for Engineering Complex Systems PDF

Author: Richard Fujimoto

Publisher: Springer

Published: 2017-08-18

Total Pages: 119

ISBN-13: 3319585444

DOWNLOAD EBOOK →

This illuminating text/reference presents a review of the key aspects of the modeling and simulation (M&S) life cycle, and examines the challenges of M&S in different application areas. The authoritative work offers valuable perspectives on the future of research in M&S, and its role in engineering complex systems. Topics and features: reviews the challenges of M&S for urban infrastructure, healthcare delivery, automated vehicle manufacturing, deep space missions, and acquisitions enterprise; outlines research issues relating to conceptual modeling, covering the development of explicit and unambiguous models, communication and decision-making, and architecture and services; considers key computational challenges in the execution of simulation models, in order to best exploit emerging computing platforms and technologies; examines efforts to understand and manage uncertainty inherent in M&S processes, and how these can be unified under a consistent theoretical and philosophical foundation; discusses the reuse of models and simulations to accelerate the simulation model development process. This thought-provoking volume offers important insights for all researchers involved in modeling and simulation across the full spectrum of disciplines and applications, defining a common research agenda to support the entire M&S research community.

Uncertainty Assessment of Large Finite Element Systems

Uncertainty Assessment of Large Finite Element Systems PDF

Author: Christian A. Schenk

Publisher: Springer Science & Business Media

Published: 2005-06-08

Total Pages: 184

ISBN-13: 9783540253433

DOWNLOAD EBOOK →

The treatment of uncertainties in the analysis of engineering structures remains one of the premium challenges in modern structural mechanics. It is only in recent years that the developments in stochastic and deterministic computational mechanics began to be synchronized. To foster these developments, novel computational procedures for the uncertainty assessment of large finite element systems are presented in this monograph. The stochastic input is modeled by the so-called Karhunen-Loève expansion, which is formulated in this context both for scalar and vector stochastic processes as well as for random fields. Particularly for strongly non-linear structures and systems the direct Monte Carlo simulation technique has proven to be most advantageous as method of solution. The capabilities of the developed procedures are demonstrated by showing some practical applications.