Modeling and Forecasting Electricity Demand

Modeling and Forecasting Electricity Demand PDF

Author: Kevin Berk

Publisher: Springer Spektrum

Published: 2015-01-30

Total Pages: 0

ISBN-13: 9783658086688

DOWNLOAD EBOOK →

The master thesis of Kevin Berk develops a stochastic model for the electricity demand of small and medium-sized companies that is flexible enough so that it can be used for various business sectors. The model incorporates the grid load as an exogenous factor and seasonalities on a daily, weekly and yearly basis. It is demonstrated how the model can be used e.g. for estimating the risk of retail contracts. The uncertainty of electricity demand is an important risk factor for customers as well as for utilities and retailers. As a consequence, forecasting electricity load and its risk is now an integral component of the risk management for all market participants.

Modeling and Forecasting Electricity Loads and Prices

Modeling and Forecasting Electricity Loads and Prices PDF

Author: Rafal Weron

Publisher: John Wiley & Sons

Published: 2007-01-30

Total Pages: 192

ISBN-13: 0470059990

DOWNLOAD EBOOK →

This book offers an in-depth and up-to-date review of different statistical tools that can be used to analyze and forecast the dynamics of two crucial for every energy company processes—electricity prices and loads. It provides coverage of seasonal decomposition, mean reversion, heavy-tailed distributions, exponential smoothing, spike preprocessing, autoregressive time series including models with exogenous variables and heteroskedastic (GARCH) components, regime-switching models, interval forecasts, jump-diffusion models, derivatives pricing and the market price of risk. Modeling and Forecasting Electricity Loads and Prices is packaged with a CD containing both the data and detailed examples of implementation of different techniques in Matlab, with additional examples in SAS. A reader can retrace all the intermediate steps of a practical implementation of a model and test his understanding of the method and correctness of the computer code using the same input data. The book will be of particular interest to the quants employed by the utilities, independent power generators and marketers, energy trading desks of the hedge funds and financial institutions, and the executives attending courses designed to help them to brush up on their technical skills. The text will be also of use to graduate students in electrical engineering, econometrics and finance wanting to get a grip on advanced statistical tools applied in this hot area. In fact, there are sixteen Case Studies in the book making it a self-contained tutorial to electricity load and price modeling and forecasting.

Modeling and Forecasting Electricity Demand

Modeling and Forecasting Electricity Demand PDF

Author: Kevin Berk

Publisher: Springer

Published: 2015-01-20

Total Pages: 123

ISBN-13: 3658086696

DOWNLOAD EBOOK →

The master thesis of Kevin Berk develops a stochastic model for the electricity demand of small and medium-sized companies that is flexible enough so that it can be used for various business sectors. The model incorporates the grid load as an exogenous factor and seasonalities on a daily, weekly and yearly basis. It is demonstrated how the model can be used e.g. for estimating the risk of retail contracts. The uncertainty of electricity demand is an important risk factor for customers as well as for utilities and retailers. As a consequence, forecasting electricity load and its risk is now an integral component of the risk management for all market participants.

Forecasting U.S. Electricity Demand

Forecasting U.S. Electricity Demand PDF

Author: Adela Maria Bolet

Publisher: Routledge

Published: 2019-08-30

Total Pages: 274

ISBN-13: 0429691459

DOWNLOAD EBOOK →

Although the energy headlines of 1985 proclaim the waning of OPEC, the collapse of oil prices, and the demise of the nuclear power industry, few policy analysts are examining the dynamic challenges and opportunities that may confront the electric power industry during the remainder of this century. In this pioneering work, Adela Maria Bolet attempts to do exactly this, namely, to reconcile the differences among forecasters as to the future of electricity demand in the industrial, commercial, and residential sectors.

Forecasting and Assessing Risk of Individual Electricity Peaks

Forecasting and Assessing Risk of Individual Electricity Peaks PDF

Author: Maria Jacob

Publisher: Springer Nature

Published: 2019-09-25

Total Pages: 108

ISBN-13: 303028669X

DOWNLOAD EBOOK →

The overarching aim of this open access book is to present self-contained theory and algorithms for investigation and prediction of electric demand peaks. A cross-section of popular demand forecasting algorithms from statistics, machine learning and mathematics is presented, followed by extreme value theory techniques with examples. In order to achieve carbon targets, good forecasts of peaks are essential. For instance, shifting demand or charging battery depends on correct demand predictions in time. Majority of forecasting algorithms historically were focused on average load prediction. In order to model the peaks, methods from extreme value theory are applied. This allows us to study extremes without making any assumption on the central parts of demand distribution and to predict beyond the range of available data. While applied on individual loads, the techniques described in this book can be extended naturally to substations, or to commercial settings. Extreme value theory techniques presented can be also used across other disciplines, for example for predicting heavy rainfalls, wind speed, solar radiation and extreme weather events. The book is intended for students, academics, engineers and professionals that are interested in short term load prediction, energy data analytics, battery control, demand side response and data science in general.

Short-Term Load Forecasting 2019

Short-Term Load Forecasting 2019 PDF

Author: Antonio Gabaldón

Publisher: MDPI

Published: 2021-02-26

Total Pages: 324

ISBN-13: 303943442X

DOWNLOAD EBOOK →

Short-term load forecasting (STLF) plays a key role in the formulation of economic, reliable, and secure operating strategies (planning, scheduling, maintenance, and control processes, among others) for a power system and will be significant in the future. However, there is still much to do in these research areas. The deployment of enabling technologies (e.g., smart meters) has made high-granularity data available for many customer segments and to approach many issues, for instance, to make forecasting tasks feasible at several demand aggregation levels. The first challenge is the improvement of STLF models and their performance at new aggregation levels. Moreover, the mix of renewables in the power system, and the necessity to include more flexibility through demand response initiatives have introduced greater uncertainties, which means new challenges for STLF in a more dynamic power system in the 2030–50 horizon. Many techniques have been proposed and applied for STLF, including traditional statistical models and AI techniques. Besides, distribution planning needs, as well as grid modernization, have initiated the development of hierarchical load forecasting. Analogously, the need to face new sources of uncertainty in the power system is giving more importance to probabilistic load forecasting. This Special Issue deals with both fundamental research and practical application research on STLF methodologies to face the challenges of a more distributed and customer-centered power system.