Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems PDF

Author: Charles M. Close

Publisher: John Wiley & Sons

Published: 2001-08-20

Total Pages: 592

ISBN-13: 0471394424

DOWNLOAD EBOOK →

The third edition of Modeling and Anaysis of Dynamic Systems continues to present students with the methodology applicable to the modeling and analysis of a variety of dynamic systems, regardless of their physical origin. It includes detailed modeling of mechanical, electrical, electro-mechanical, thermal, and fluid systems. Models are developed in the form of state-variable equations, input-output differential equations, transfer functions, and block diagrams. The Laplace transform is used for analytical solutions. Computer solutions are based on MATLAB and Simulink. Examples include both linear and nonlinear systems. An introduction is given to the modeling and design tools for feedback control systems. The text offers considerable flexibility in the selection of material for a specific course. Students majoring in many different engineering disciplines have used the text. Such courses are frequently followed by control-system design courses in the various disciplines.

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems PDF

Author: Ramin S. Esfandiari

Publisher: CRC Press

Published: 2018-01-29

Total Pages: 555

ISBN-13: 1351751646

DOWNLOAD EBOOK →

Modeling and Analysis of Dynamic Systems, Third Edition introduces MATLAB®, Simulink®, and SimscapeTM and then utilizes them to perform symbolic, graphical, numerical, and simulation tasks. Written for senior level courses/modules, the textbook meticulously covers techniques for modeling a variety of engineering systems, methods of response analysis, and introductions to mechanical vibration, and to basic control systems. These features combine to provide students with a thorough knowledge of the mathematical modeling and analysis of dynamic systems. The Third Edition now includes Case Studies, expanded coverage of system identification, and updates to the computational tools included.

Dynamic Systems

Dynamic Systems PDF

Author: Bingen Yang

Publisher: Cambridge University Press

Published: 2022-11-24

Total Pages: 802

ISBN-13: 1316846172

DOWNLOAD EBOOK →

Presenting students with a comprehensive and efficient approach to the modelling, simulation, and analysis of dynamic systems, this textbook addresses mechanical, electrical, thermal and fluid systems, feedback control systems, and their combinations. It features a robust introduction to fundamental mathematical prerequisites, suitable for students from a range of backgrounds; clearly established three-key procedures – fundamental principles, basic elements, and ways of analysis – for students to build on in confidence as they explore new topics; over 300 end-of-chapter problems, with solutions available for instructors, to solidify a hands-on understanding; and clear and uncomplicated examples using MATLAB®/Simulink® and Mathematica®, to introduce students to computational approaches. With a capstone chapter focused on the application of these techniques to real-world engineering problems, this is an ideal resource for a single-semester course in dynamic systems for students in mechanical, aerospace and civil engineering.

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems PDF

Author: Charles M. Close

Publisher:

Published: 1993

Total Pages: 708

ISBN-13:

DOWNLOAD EBOOK →

This text is intended for a first course in dynamic systems and is designed for use by sophomore and junior majors in all fields of engineering, but principally mechanical and electrical engineers. All engineers must understand how dynamic systems work and what responses can be expected from various physical systems.

Modeling, Analysis, and Control of Dynamic Systems

Modeling, Analysis, and Control of Dynamic Systems PDF

Author: William John Palm

Publisher:

Published: 1983-01-28

Total Pages: 772

ISBN-13:

DOWNLOAD EBOOK →

An integrated presentation of both classical and modern methods of systems modeling, response and control. Includes coverage of digital control systems. Details sample data systems and digital control. Provides numerical methods for the solution of differential equations. Gives in-depth information on the modeling of physical systems and central hardware.

Dynamic Systems

Dynamic Systems PDF

Author: Craig A. Kluever

Publisher: Wiley Global Education

Published: 2019-12-24

Total Pages: 416

ISBN-13: 1119601983

DOWNLOAD EBOOK →

The simulation of complex, integrated engineering systems is a core tool in industry which has been greatly enhanced by the MATLAB® and Simulink® software programs. The second edition of Dynamic Systems: Modeling, Simulation, and Control teaches engineering students how to leverage powerful simulation environments to analyze complex systems. Designed for introductory courses in dynamic systems and control, this textbook emphasizes practical applications through numerous case studies—derived from top-level engineering from the AMSE Journal of Dynamic Systems. Comprehensive yet concise chapters introduce fundamental concepts while demonstrating physical engineering applications. Aligning with current industry practice, the text covers essential topics such as analysis, design, and control of physical engineering systems, often composed of interacting mechanical, electrical, and fluid subsystem components. Major topics include mathematical modeling, system-response analysis, and feedback control systems. A wide variety of end-of-chapter problems—including conceptual problems, MATLAB® problems, and Engineering Application problems—help students understand and perform numerical simulations for integrated systems.

Dynamic System Reliability

Dynamic System Reliability PDF

Author: Liudong Xing

Publisher: John Wiley & Sons

Published: 2019-03-18

Total Pages: 251

ISBN-13: 1119507634

DOWNLOAD EBOOK →

Offers timely and comprehensive coverage of dynamic system reliability theory This book focuses on hot issues of dynamic system reliability, systematically introducing the reliability modeling and analysis methods for systems with imperfect fault coverage, systems with function dependence, systems subject to deterministic or probabilistic common-cause failures, systems subject to deterministic or probabilistic competing failures, and dynamic standby sparing systems. It presents recent developments of such extensions involving reliability modelling theory, reliability evaluation methods, and features numerous case studies based on real-world examples. The presented dynamic reliability theory can enable a more accurate representation of actual complex system behavior, thus more effectively guiding the reliable design of real-world critical systems. Dynamic System Reliability: Modelling and Analysis of Dynamic and Dependent Behaviors begins by describing the evolution from the traditional static reliability theory to the dynamic system reliability theory, and provides a detailed investigation of dynamic and dependent behaviors in subsequent chapters. Although written for those with a background in basic probability theory and stochastic processes, the book includes a chapter reviewing the fundamentals that readers need to know in order to understand contents of other chapters which cover advanced topics in reliability theory and case studies. The first book systematically focusing on dynamic system reliability modelling and analysis theory Provides a comprehensive treatment on imperfect fault coverage (single-level/multi-level or modular), function dependence, common cause failures (deterministic and probabilistic), competing failures (deterministic and probabilistic), and dynamic standby sparing Includes abundant illustrative examples and case studies based on real-world systems Covers recent advances in combinatorial models and algorithms for dynamic system reliability analysis Offers a rich set of references, providing helpful resources for readers to pursue further research and study of the topics Dynamic System Reliability: Modelling and Analysis of Dynamic and Dependent Behaviors is an excellent book for undergraduate and graduate students, and engineers and researchers in reliability and related disciplines.

Modeling of Dynamic Systems

Modeling of Dynamic Systems PDF

Author: Lennart Ljung

Publisher: Prentice Hall

Published: 1994

Total Pages: 0

ISBN-13: 9780135970973

DOWNLOAD EBOOK →

Written by a recognized authority in the field of identification and control, this book draws together into a single volume the important aspects of system identification AND physical modelling. KEY TOPICS: Explores techniques used to construct mathematical models of systems based on knowledge from physics, chemistry, biology, etc. (e.g., techniques with so called bond-graphs, as well those which use computer algebra for the modeling work). Explains system identification techniques used to infer knowledge about the behavior of dynamic systems based on observations of the various input and output signals that are available for measurement. Shows how both types of techniques need to be applied in any given practical modeling situation. Considers applications, primarily simulation. MARKET: For practicing engineers who are faced with problems of modeling.

Distributed-Order Dynamic Systems

Distributed-Order Dynamic Systems PDF

Author: Zhuang Jiao

Publisher: Springer Science & Business Media

Published: 2012-02-24

Total Pages: 98

ISBN-13: 1447128524

DOWNLOAD EBOOK →

Distributed-order differential equations, a generalization of fractional calculus, are of increasing importance in many fields of science and engineering from the behaviour of complex dielectric media to the modelling of nonlinear systems. This Brief will broaden the toolbox available to researchers interested in modeling, analysis, control and filtering. It contains contextual material outlining the progression from integer-order, through fractional-order to distributed-order systems. Stability issues are addressed with graphical and numerical results highlighting the fundamental differences between constant-, integer-, and distributed-order treatments. The power of the distributed-order model is demonstrated with work on the stability of noncommensurate-order linear time-invariant systems. Generic applications of the distributed-order operator follow: signal processing and viscoelastic damping of a mass–spring set up. A new general approach to discretization of distributed-order derivatives and integrals is described. The Brief is rounded out with a consideration of likely future research and applications and with a number of MATLAB® codes to reduce repetitive coding tasks and encourage new workers in distributed-order systems.

Simulation of Dynamic Systems with MATLAB® and Simulink®

Simulation of Dynamic Systems with MATLAB® and Simulink® PDF

Author: Harold Klee

Publisher: CRC Press

Published: 2018-02-02

Total Pages: 852

ISBN-13: 1498787789

DOWNLOAD EBOOK →

Continuous-system simulation is an increasingly important tool for optimizing the performance of real-world systems. The book presents an integrated treatment of continuous simulation with all the background and essential prerequisites in one setting. It features updated chapters and two new sections on Black Swan and the Stochastic Information Packet (SIP) and Stochastic Library Units with Relationships Preserved (SLURP) Standard. The new edition includes basic concepts, mathematical tools, and the common principles of various simulation models for different phenomena, as well as an abundance of case studies, real-world examples, homework problems, and equations to develop a practical understanding of concepts.