Microwave Imaging

Microwave Imaging PDF

Author: Matteo Pastorino

Publisher: John Wiley & Sons

Published: 2010-04-27

Total Pages: 367

ISBN-13: 0470602473

DOWNLOAD EBOOK →

An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging—a technique used in sensing a given scene by means of interrogating microwaves—has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging—including reconstruction procedures and imaging systems and apparatus—enabling the reader to use microwaves for diagnostic purposes in a wide range of applications. This hands-on resource features: A review of the electromagnetic inverse scattering problem formulation, written from an engineering perspective and with notations The most effective reconstruction techniques based on diffracted waves, including time- and frequency-domain methods, as well as deterministic and stochastic space-domain procedures Currently proposed imaging apparatus, aimed at fast and accurate measurements of the scattered field data Insight on near field probes, microwave axial tomographs, and microwave cameras and scanners A discussion of practical applications with detailed descriptions and discussions of several specific examples (e.g., materials evaluation, crack detection, inspection of civil and industrial structures, subsurface detection, and medical applications) A look at emerging techniques and future trends Microwave Imaging is a practical resource for engineers, scientists, researchers, and professors in the fields of civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering.

Microwave Non-Destructive Testing and Evaluation Principles

Microwave Non-Destructive Testing and Evaluation Principles PDF

Author: R. Zoughi

Publisher: Springer Science & Business Media

Published: 2000-02-29

Total Pages: 292

ISBN-13: 9780412625008

DOWNLOAD EBOOK →

This book provides a thorough and coherent understanding of the fundamentals of microwave non-destructive evaluation principles. This is achieved by starting with the basic understanding of subjects such as waves, material media, interaction of waves at high frequencies with material media, understanding the fundamentals of reflection, refraction, transmission and wave polarization. All these issues are addressed in a concise manner providing a much needed text on this subject. Each chapter has a set of problems and questions, with solutions and worked examples, thus making the book of great use to those teaching in this area. This book will also be invaluable to all those conducting research in microwave NDE, whether based in an industrial or academic environment.

Microwave Non-Destructive Testing and Evaluation Principles

Microwave Non-Destructive Testing and Evaluation Principles PDF

Author: R. Zoughi

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 283

ISBN-13: 9401513031

DOWNLOAD EBOOK →

Microwave and millimeter-wave non-destructive testing and evaluation (NDT&E) is generally understood to mean using high-frequency electromagnetic energy to inspect and characterize materials and structures. In spite of possessing some distinct advantages in certain applications to other NDT&E techniques, microwave NDT&E has only found compared limited practical application during the past 45 years. These advantages include lack of a need for contact between the sensor and the object being inspected, the ability to penetrate dielectric materials, and superior sensitivity to certain material constituents and flaws. One factor contributing to this minimal acceptance by the NDT &E community has been a generally poor understanding in this community of the theory and practice that underlie the technology. This situation exists partly because of a paucity of microwave NDT&E textbook and reference material. Some chapters, reviews, and books aimed at filling this need have been published in the past but, for the most part, this material is based on the use of older microwave technology. However, during the past ten years great strides have been made in ternlS of the cost, size, and ease of use of microwave components. In addition, recent advances in modeling and measurement techniques have expanded the range of applications for microwave NDT&E. Such applications include inspecting modern materials such as composites, detecting and characterizing surface flaws, and evaluating the compressive strength of cement structures. These advances have created an urgent need for up-to-date textbook material on this subject.

Materials Characterization Using Nondestructive Evaluation (NDE) Methods

Materials Characterization Using Nondestructive Evaluation (NDE) Methods PDF

Author: Gerhard Huebschen

Publisher: Woodhead Publishing

Published: 2016-03-23

Total Pages: 322

ISBN-13: 008100057X

DOWNLOAD EBOOK →

Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques Reviews the determination of microstructural and mechanical properties Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials