Microscopic Foundations of Relativistic Fluid Dynamics

Microscopic Foundations of Relativistic Fluid Dynamics PDF

Author: Gabriel S. Denicol

Publisher: Springer Nature

Published: 2022-03-21

Total Pages: 306

ISBN-13: 3030820777

DOWNLOAD EBOOK →

This book provides an introduction to relativistic dissipative fluid dynamics, with particular emphasis on its derivation from microscopic transport theory. After a phenomenological derivation of relativistic dissipative fluid dynamics from the second law of thermodynamics, the intrinsic instabilities of relativistic Navier-Stokes theory are discussed. In turn, analytical solutions of relativistic dissipative fluid dynamics are presented. Following, the authors discuss several theories and approaches to derive transport coefficients in dissipative fluid dynamics such as the Chapman-Enskog theory, the theory of Israel and Stewart, and a more recent derivation of relativistic dissipative fluid dynamics based on kinetic theory, which constitutes the main focus of the second part of this book. This book is intended for advanced graduate students and researchers in physics and requires basic knowledge of the theory of special and general relativity. It should be of particular interest to researchers that apply relativistic fluid dynamics in cosmology, astrophysics, and high-energy nuclear physics.

Relativistic Fluid Dynamics

Relativistic Fluid Dynamics PDF

Author: C. Cattaneo

Publisher: Springer Science & Business Media

Published: 2011-06-08

Total Pages: 420

ISBN-13: 3642110991

DOWNLOAD EBOOK →

Pham Mau Quam: Problèmes mathématiques en hydrodynamique relativiste.- A. Lichnerowicz: Ondes de choc, ondes infinitésimales et rayons en hydrodynamique et magnétohydrodynamique relativistes.- A.H. Taub: Variational principles in general relativity.- J. Ehlers: General relativistic kinetic theory of gases.- K. Marathe: Abstract Minkowski spaces as fibre bundles.- G. Boillat: Sur la propagation de la chaleur en relativité.

Relativistic Fluid Dynamics In and Out of Equilibrium

Relativistic Fluid Dynamics In and Out of Equilibrium PDF

Author: Paul Romatschke

Publisher: Cambridge University Press

Published: 2019-05-09

Total Pages: 207

ISBN-13: 1108579353

DOWNLOAD EBOOK →

The past decade has seen unprecedented developments in the understanding of relativistic fluid dynamics in and out of equilibrium, with connections to astrophysics, cosmology, string theory, quantum information, nuclear physics and condensed matter physics. Romatschke and Romatschke offer a powerful new framework for fluid dynamics, exploring its connections to kinetic theory, gauge/gravity duality and thermal quantum field theory. Numerical algorithms to solve the equations of motion of relativistic dissipative fluid dynamics as well as applications to various systems are discussed. In particular, the book contains a comprehensive review of the theory background necessary to apply fluid dynamics to simulate relativistic nuclear collisions, including comparisons of fluid simulation results to experimental data for relativistic lead-lead, proton-lead and proton-proton collisions at the Large Hadron Collider (LHC). The book is an excellent resource for students and researchers working in nuclear physics, astrophysics, cosmology, quantum many-body systems and string theory.

Microscopic Simulations of Complex Flows

Microscopic Simulations of Complex Flows PDF

Author: Michel Mareschal

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 368

ISBN-13: 1468413392

DOWNLOAD EBOOK →

This volume contains the proceedings of a workshop which was held in Brussels during the month of August 1989. A strong motivation for organizing this workshop was to bring together people who have been involved in the microscopic simulation of phenomena occuring on "large" space and time scales. Indeed, results obtained in the last years by different groups tend to support the idea that macroscopic behavior already appears in systems small enough so as to be modelled by a collection of interacting particles on a (super) computer. Such an approach is certainly desirable to study situations where no satisfactory phenomenological theory is known to hold, or where solutions of the equations are too hard to obtain numerically. It is also interesting from a more fundamental point of view, namely the investigation of the limits of validity of the macroscopic description itself. The main technique used in bridging the gap between the macro and micro worlds has been the molecular dynamics simulations, that is the numerical solution of the equations of motion of the model particles which constitute the system under study, a gas, a liquid or even a solid. However, this technique is by no means the only one.

Relativistic Nuclear Fluid Dynamics and VUU Kinetic Theory

Relativistic Nuclear Fluid Dynamics and VUU Kinetic Theory PDF

Author:

Publisher:

Published: 1987

Total Pages:

ISBN-13:

DOWNLOAD EBOOK →

Relativistic kinetic theory may be used to understand hot dense hadronic matter. We address the questions of collective flow and pion production in a 3 D relativistic fluid dynamic model and in the VUU microscopic theory. The GSI/LBL collective flow and pion data point to a stiff equation of state. The effect of the nuclear equation of state on the thermodynamic parameters is discussed. The properties of dense hot hadronic matter are studied in Au + Au collisions from 0.1 to 10 GeV/nucleon. 22 refs., 5 figs.

Geometrical Formulation of Renormalization-Group Method as an Asymptotic Analysis

Geometrical Formulation of Renormalization-Group Method as an Asymptotic Analysis PDF

Author: Teiji Kunihiro

Publisher: Springer Nature

Published: 2022-04-01

Total Pages: 493

ISBN-13: 9811681899

DOWNLOAD EBOOK →

This book presents a comprehensive account of the renormalization-group (RG) method and its extension, the doublet scheme, in a geometrical point of view. It extract long timescale macroscopic/mesoscopic dynamics from microscopic equations in an intuitively understandable way rather than in a mathematically rigorous manner and introduces readers to a mathematically elementary, but useful and widely applicable technique for analyzing asymptotic solutions in mathematical models of nature. The book begins with the basic notion of the RG theory, including its connection with the separation of scales. Then it formulates the RG method as a construction method of envelopes of the naive perturbative solutions containing secular terms, and then demonstrates the formulation in various types of evolution equations. Lastly, it describes successful physical examples, such as stochastic and transport phenomena including second-order relativistic as well as nonrelativistic fluid dynamics with causality and transport phenomena in cold atoms, with extensive numerical expositions of transport coefficients and relaxation times. Requiring only an undergraduate-level understanding of physics and mathematics, the book clearly describes the notions and mathematical techniques with a wealth of examples. It is a unique and can be enlightening resource for readers who feel mystified by renormalization theory in quantum field theory.

Relativistic Hydrodynamics

Relativistic Hydrodynamics PDF

Author: Luciano Rezzolla

Publisher: OUP Oxford

Published: 2013-09-26

Total Pages: 752

ISBN-13: 0191509914

DOWNLOAD EBOOK →

Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solution of the equations, and over to the applications in modern physics and astrophysics. Numerous figures, diagrams, and a variety of exercises aid the material in the book. The most obvious applications of this work range from astrophysics (black holes, neutron stars, gamma-ray bursts, and active galaxies) to cosmology (early-universe hydrodynamics and phase transitions) and particle physics (heavy-ion collisions). It is often said that fluids are either seen as solutions of partial differential equations or as "wet". Fluids in this book are definitely wet, but the mathematical beauty of differential equations is not washed out.

Fluid Mechanics

Fluid Mechanics PDF

Author: L D Landau

Publisher: Elsevier

Published: 2013-09-03

Total Pages: 556

ISBN-13: 1483161048

DOWNLOAD EBOOK →

Fluid Mechanics, Second Edition deals with fluid mechanics, that is, the theory of the motion of liquids and gases. Topics covered range from ideal fluids and viscous fluids to turbulence, boundary layers, thermal conduction, and diffusion. Surface phenomena, sound, and shock waves are also discussed, along with gas flow, combustion, superfluids, and relativistic fluid dynamics. This book is comprised of 16 chapters and begins with an overview of the fundamental equations of fluid dynamics, including Euler's equation and Bernoulli's equation. The reader is then introduced to the equations of motion of a viscous fluid; energy dissipation in an incompressible fluid; damping of gravity waves; and the mechanism whereby turbulence occurs. The following chapters explore the laminar boundary layer; thermal conduction in fluids; dynamics of diffusion of a mixture of fluids; and the phenomena that occur near the surface separating two continuous media. The energy and momentum of sound waves; the direction of variation of quantities in a shock wave; one- and two-dimensional gas flow; and the intersection of surfaces of discontinuity are also also considered. This monograph will be of interest to theoretical physicists.