Microphysics of Atmospheric Phenomena

Microphysics of Atmospheric Phenomena PDF

Author: Boris M. Smirnov

Publisher: Springer

Published: 2016-08-29

Total Pages: 270

ISBN-13: 3319308130

DOWNLOAD EBOOK →

This book investigates elementary processes in the Earth’s atmosphere involving photons, electrons, ions, radicals, and aerosols. It is based on global atmospheric models such as the standard atmospheric model with averaged atmospheric parameters across the globe and over time, the Earth’s energetic balance, and the global electric circuit that allows to analyze fundamental atmospheric properties to be analyzed. Rate constants of elementary processes in the Earth’s atmosphere, together with measured atmospheric parameters and existing concepts of atmospheric phenomena, are used in the analysis of global and local atmospheric processes. Atmospheric photoprocesses result from the interaction of solar radiation with the atmosphere and processes involving ions, oxygen atoms, excited atomic particles and ozone molecules. Atmospheric electricity as a secondary phenomenon to atmospheric water circulation results in a chain of processes that begins with collisions of water aerosols in different aggregate states. Cosmic rays are of importance for atmospheric electricity, as they create positive and negative ions in the air. Air breakdown in an electric field of clouds in the form of lightning may develop under the influence of cosmic ray-created seed electrons, which are necessary for electron multiplication in ionization wave-streamers. The upper atmosphere (ionosphere) is formed under solar radiation in a vacuum ultraviolet spectrum, and absorption of this radiation leads to air photoionization. The greenhouse effect is determined by atmospheric water, whereas transitions between a water vapor and aerosols may lead to a change in atmospheric optical depth. Carbon dioxide contributes in small portions to the atmospheric greenhouse effect. Cosmic rays are of importance for atmospheric discharge, the origin of lightning and cloud formation in the first stage of aerosol growth. This book provides a qualitative description of atmospheric properties and phenomena based on elementary processes and simple models.

An Introduction to Atmospheric Physics

An Introduction to Atmospheric Physics PDF

Author: David G. Andrews

Publisher: Cambridge University Press

Published: 2010-04-29

Total Pages: 334

ISBN-13: 1316102092

DOWNLOAD EBOOK →

A quantitative introduction to the Earth's atmosphere for intermediate-advanced undergraduate and graduate students, with an emphasis on underlying physical principles. This edition has been brought completely up-to-date, and now includes a new chapter on the physics of climate change which builds upon material introduced in earlier chapters, giving the student a broad understanding of some of the physical concepts underlying this most important and topical subject. In contrast to many other books on atmospheric science, the emphasis is on the underlying physics. Atmospheric applications are developed mainly in the problems given at the end of each chapter. The book is an essential resource for all students of atmospheric physics as part of an atmospheric science, meteorology, physics, Earth science, planetary science, or applied mathematics course.

An Introduction to Atmospheric Physics

An Introduction to Atmospheric Physics PDF

Author: Robert G. Fleagle

Publisher: Academic Press

Published: 1981-01-09

Total Pages: 42

ISBN-13: 9780080918228

DOWNLOAD EBOOK →

This book is addressed to those who wish to understand the relationship between atmospheric phenomena and the nature of matter as expressed in the principles of physics. The interesting atmospheric phenomena are more than applications of gravitation, of thermodynamics, of hydrodynamics, or of electrodynamics; and mastery of the results of controlled experiment and of the related theory alone does not imply an understanding of atmospheric phenomena. This distinction arises because the extent and the complexity of the atmosphere permit effects and interactions that are entirely negligible in the laboratory or are deliberately excluded from it. the objective of laboratory physics is, by isolating the relevant variables, to reveal the fundamental properties of matter; whereas the objective of atmospheric physics, or of any observational science, is to understand those phenomena that are characteristic of the whole system. For these reasons the exposition of atmospheric physics requires substantial extensions of classical physics. It also requires that understanding be based on a coherent "way of seeing" the ensemble of atmospheric phenomena. Only then is understanding likely to stimulate still more general insights.

Microphysics of Clouds and Precipitation

Microphysics of Clouds and Precipitation PDF

Author: H.R. Pruppacher

Publisher: Springer Science & Business Media

Published: 2010-06-25

Total Pages: 975

ISBN-13: 0306481006

DOWNLOAD EBOOK →

Cloud physics has achieved such a voluminous literature over the past few decades that a significant quantitative study of the entire field would prove unwieldy. This book concentrates on one major aspect: cloud microphysics, which involves the processes that lead to the formation of individual cloud and precipitation particles. Common practice has shown that one may distinguish among the following addi tional major aspects: cloud dynamics, which is concerned with the physics respon sible for the macroscopic features of clouds; cloud electricity, which deals with the electrical structure of clouds and the electrification processes of cloud and precipi tation particles; and cloud optics and radar meteorology, which describe the effects of electromagnetic waves interacting with clouds and precipitation. Another field intimately related to cloud physics is atmospheric chemistry, which involves the chemical composition ofthe atmosphere and the life cycle and characteristics of its gaseous and particulate constituents. In view of the natural interdependence of the various aspects of cloud physics, the subject of microphysics cannot be discussed very meaningfully out of context. Therefore, we have found it necessary to touch briefly upon a few simple and basic concepts of cloud dynamics and thermodynamics, and to provide an account of the major characteristics of atmospheric aerosol particles. We have also included a separate chapter on some of the effects of electric fields and charges on the precipitation-forming processes.

Global Atmospheric Phenomena Involving Water

Global Atmospheric Phenomena Involving Water PDF

Author: Boris M. Smirnov

Publisher: Springer Nature

Published: 2020-10-10

Total Pages: 223

ISBN-13: 3030580393

DOWNLOAD EBOOK →

This book covers the role of water in global atmospheric phenomena, focussing on the physical processes involving water molecules and water microparticles. It presents the reader with a detailed look at some of the most important types of global atmospheric phenomena involving water, such as water circulation, atmospheric electricity and the greenhouse effect. Beginning with the cycle of water evaporation and condensation, and the important roles played by the nucleation and growth processes of water microdroplets, the book discusses atmospheric electricity as a secondary phenomenon of water circulation in the atmosphere, comprising a chain of processes involving water molecules and water microdroplets. Finally, the book discusses aspects of the molecular spectroscopy of greenhouse atmospheric components, showing how water molecules and water microdroplets give the main contribution to atmospheric emission in the infrared spectrum range. Featuring numerous didactic schematics and appendices detailing all necessary unit conversion factors, this book is useful to both active researchers and doctoral students working in the fields of atmospheric physics, climate science and molecular spectroscopy.

Cloud Dynamics

Cloud Dynamics PDF

Author: Robert A. Houze, Jr.

Publisher: Elsevier

Published: 1994-06-28

Total Pages: 573

ISBN-13: 0080502105

DOWNLOAD EBOOK →

Clouds play a critical role in the Earth's climate, general atmospheric circulation, and global water balance. Clouds are essential elements in mesoscale meteorology, atmospheric chemistry, air pollution, atmosphericradiation, and weather forecasting, and thus must be understood by any student or researcher in the atmospheric sciences. Cloud Dynamics provides a skillful and comprehensive examination of the nature of clouds--what they look like and why, how scientists observe them, and the basic dynamics and physics that underlie them. The book describes the mechanics governing each type of cloud that occurs in Earth's atmosphere, and the organization of various types of clouds in larger weather systems such as fronts, thunderstorms, and hurricanes.This book is aimed specifically at graduate students, advanced undergraduates, practicing researchers either already in atmospheric science or moving in from a related scientific field, and operational meteorologists. Some prior knowledge of atmospheric dynamics and physics is helpful, but a thorough overview of the necessary prerequisites is supplied. Provides a complete treatment of clouds integrating the analysis of air motions with cloud structure, microphysics, and precipitation mechanics Describes and explains the basic types of clouds and cloud systems that occur in the atmosphere-fog, stratus, stratocumulus, altocumulus, altostratus, cirrus, thunderstorms, tornadoes, waterspouts, orographically induced clouds, mesoscale convection complexes, hurricanes, fronts, and extratropical cyclones Presents a photographic guide, presented in the first chapter, linking the examination of each type of cloud with an image to enhance visual retention and understanding Summarizes the fundamentals, both observational and theoretical, of atmospheric dynamics, thermodynamics, cloud microphysics, and radar meteorology, allowing each type of cloud to be examined in depth Integrates the latest field observations, numerical model simulations, and theory Supplies a theoretical treatment suitable for the advanced undergraduate or graduate level

Cloud and Precipitation Microphysics

Cloud and Precipitation Microphysics PDF

Author: Jerry M. Straka

Publisher: Cambridge University Press

Published: 2009-06-11

Total Pages: 407

ISBN-13: 1139478834

DOWNLOAD EBOOK →

This book focuses specifically on bin and bulk parameterizations for the prediction of cloud and precipitation at various scales - the cloud scale, mesoscale, synoptic scale, and the global climate scale. It provides a background to the fundamental principles of parameterization physics, including processes involved in the production of clouds, ice particles, liquid water, snow aggregate, graupel and hail. It presents full derivations of the parameterizations, allowing readers to build parameterization packages, with varying levels of complexity based on information in the book. Architectures for a range of dynamical models are given, in which parameterizations form a significant tool for investigating large non-linear numerical systems. Model codes are available online at www.cambridge.org/9780521883382. Written for researchers and advanced students of cloud and precipitation microphysics, this book is also a valuable reference for all atmospheric scientists involved in models of numerical weather prediction.

Atmospheric Science

Atmospheric Science PDF

Author: John M. Wallace

Publisher: Elsevier

Published: 2006-03-24

Total Pages: 507

ISBN-13: 0080499538

DOWNLOAD EBOOK →

Atmospheric Science, Second Edition, is the long-awaited update of the classic atmospheric science text, which helped define the field nearly 30 years ago and has served as the cornerstone for most university curricula. Now students and professionals alike can use this updated classic to understand atmospheric phenomena in the context of the latest discoveries, and prepare themselves for more advanced study and real-life problem solving. This latest edition of Atmospheric Science, has been revamped in terms of content and appearance. It contains new chapters on atmospheric chemistry, the Earth system, the atmospheric boundary layer, and climate, as well as enhanced treatment of atmospheric dynamics, radiative transfer, severe storms, and global warming. The authors illustrate concepts with full-color, state-of-the-art imagery and cover a vast amount of new information in the field. Extensive numerical and qualitative exercises help students apply basic physical principles to atmospheric problems. There are also biographical footnotes summarizing the work of key scientists, along with a student companion website that hosts climate data; answers to quantitative exercises; full solutions to selected exercises; skew-T log p chart; related links, appendices; and more. The instructor website features: instructor’s guide; solutions to quantitative exercises; electronic figures from the book; plus supplementary images for use in classroom presentations. Meteorology students at both advanced undergraduate and graduate levels will find this book extremely useful. Full-color satellite imagery and cloud photographs illustrate principles throughout Extensive numerical and qualitative exercises emphasize the application of basic physical principles to problems in the atmospheric sciences Biographical footnotes summarize the lives and work of scientists mentioned in the text, and provide students with a sense of the long history of meteorology Companion website encourages more advanced exploration of text topics: supplementary information, images, and bonus exercises

Physics of the Atmosphere and Climate

Physics of the Atmosphere and Climate PDF

Author: Murry L. Salby

Publisher: Cambridge University Press

Published: 2012-01-16

Total Pages: 717

ISBN-13: 0521767180

DOWNLOAD EBOOK →

Murry Salby's textbook provides an integrated treatment of processes controlling the Earth-atmosphere system for students and researchers.

The Atmospheric Sciences

The Atmospheric Sciences PDF

Author: National Research Council

Publisher: National Academies Press

Published: 1998-11-22

Total Pages: 383

ISBN-13: 0309064155

DOWNLOAD EBOOK →

Technology has propelled the atmospheric sciences from a fledgling discipline to a global enterprise. Findings in this field shape a broad spectrum of decisionsâ€"what to wear outdoors, whether aircraft should fly, how to deal with the issue of climate change, and more. This book presents a comprehensive assessment of the atmospheric sciences and offers a vision for the future and a range of recommendations for federal authorities, the scientific community, and education administrators. How does atmospheric science contribute to national well-being? In the context of this question, the panel identifies imperatives in scientific observation, recommends directions for modeling and forecasting research, and examines management issues, including the growing problem of weather data availability. Five subdisciplinesâ€"physics, chemistry, dynamics and weather forecasting, upper atmosphere and near-earth space physics, climate and climate changeâ€"and their status as the science enters the twenty-first century are examined in detail, including recommendations for research. This readable book will be of interest to public-sector policy framers and private-sector decisionmakers as well as researchers, educators, and students in the atmospheric sciences.