Magnetic Resonance Microscopy

Magnetic Resonance Microscopy PDF

Author: Sabina Haber-Pohlmeier

Publisher: John Wiley & Sons

Published: 2022-04-04

Total Pages: 468

ISBN-13: 3527347607

DOWNLOAD EBOOK →

Magnetic Resonance Microscopy Explore the interdisciplinary applications of magnetic resonance microscopy in this one-of-a-kind resource In Magnetic Resonance Microscopy: Instrumentation and Applications in Engineering, Life Science and Energy Research, a team of distinguished researchers delivers a comprehensive exploration of the use of magnetic resonance microscopy (MRM) and similar techniques in an interdisciplinary milieux. Opening with a section on hardware and methodology, the book moves on to consider developments in the field of mobile nuclear magnetic resonance. Essential processes, including filtration, multi-phase flow and transport, and a wide range of systems – from biomarkers via single cells to plants and biofilms – are discussed next. After a fulsome treatment of MRM in the field of energy research, the editors conclude the book with a chapter extoling the virtues of a holistic treatment of theory and application in MRM. Magnetic Resonance Microscopy: Instrumentation and Applications in Engineering, Life Science and Energy Research also includes: A thorough introduction to recent developments in magnetic resonance microscopy hardware and methods, including ceramic coils for MR microscopy Comprehensive explorations of applications in chemical engineering, including ultra-fast MR techniques to image multi-phase flow in pipes and reactors Practical discussions of applications in the life sciences, including MRI of single cells labelled with super paramagnetic iron oxide nanoparticles In-depth examinations of new applications in energy research, including spectroscopic imaging of devices for electrochemical storage Perfect for practicing scientists from all fields, Magnetic Resonance Microscopy: Instrumentation and Applications in Engineering, Life Science and Energy Research is an ideal resource for anyone seeking a one-stop guide to magnetic resonance microscopy for engineers, life scientists, and energy researchers.

MEMS Accelerometers

MEMS Accelerometers PDF

Author: Mahmoud Rasras

Publisher: MDPI

Published: 2019-05-27

Total Pages: 252

ISBN-13: 3038974145

DOWNLOAD EBOOK →

Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc. This Special Issue on "MEMS Accelerometers" seeks to highlight research papers, short communications, and review articles that focus on: Novel designs, fabrication platforms, characterization, optimization, and modeling of MEMS accelerometers. Alternative transduction techniques with special emphasis on opto-mechanical sensing. Novel applications employing MEMS accelerometers for consumer electronics, industries, medicine, entertainment, navigation, etc. Multi-physics design tools and methodologies, including MEMS-electronics co-design. Novel accelerometer technologies and 9DoF IMU integration. Multi-accelerometer platforms and their data fusion.

Optical Signal Processing by Silicon Photonics

Optical Signal Processing by Silicon Photonics PDF

Author: Jameel Ahmed

Publisher: Springer Science & Business Media

Published: 2013-09-14

Total Pages: 131

ISBN-13: 9814560111

DOWNLOAD EBOOK →

The main objective of this book is to make respective graduate students understand the nonlinear effects inside SOI waveguide and possible applications of SOI waveguides in this emerging research area of optical fibre communication. This book focuses on achieving successful optical frequency shifting by Four Wave Mixing (FWM) in silicon-on-insulator (SOI) waveguide by exploiting a nonlinear phenomenon.

Optical Microresonators

Optical Microresonators PDF

Author: John Heebner

Publisher: Springer Science & Business Media

Published: 2008

Total Pages: 275

ISBN-13: 0387730672

DOWNLOAD EBOOK →

Optical Micro-Resonators are an exciting new field of research that has gained prominence in the past few years due to the emergence of new fabrication technologies. This book is the first detailed text on the theory, fabrication, and applications of optical micro-resonators, and will be found useful by both graduate students and researchers in the field.

Foundations for Microstrip Circuit Design

Foundations for Microstrip Circuit Design PDF

Author: Terry C. Edwards

Publisher: John Wiley & Sons

Published: 2016-04-18

Total Pages: 688

ISBN-13: 1118936191

DOWNLOAD EBOOK →

Building on the success of the previous three editions, Foundations for Microstrip Circuit Design offers extensive new, updated and revised material based upon the latest research. Strongly design-oriented, this fourth edition provides the reader with a fundamental understanding of this fast expanding field making it a definitive source for professional engineers and researchers and an indispensable reference for senior students in electronic engineering. Topics new to this edition: microwave substrates, multilayer transmission line structures, modern EM tools and techniques, microstrip and planar transmision line design, transmission line theory, substrates for planar transmission lines, Vias, wirebonds, 3D integrated interposer structures, computer-aided design, microstrip and power-dependent effects, circuit models, microwave network analysis, microstrip passive elements, and slotline design fundamentals.