Methods of Wave Theory in Dispersive Media

Methods of Wave Theory in Dispersive Media PDF

Author: Mikhail Viktorovich Kuzelev

Publisher: World Scientific

Published: 2010

Total Pages: 271

ISBN-13: 981426170X

DOWNLOAD EBOOK →

Ch. 1. Linear harmonic waves in dispersive systems. Initial-value problem and problem with an external source. 1. Harmonic waves in dispersive systems. 2. Initial-value problem. Eigenmode method. 3. Characteristic function of the state vector. Dispersion operator. 4. Laplace transform method -- ch. 2. A case study of linear waves in dispersive media. 5. Transverse electromagnetic waves in an isotropic dielectric. 6. Longitudinal electrostatic waves in a cold isotropic plasma. Collisional dissipation of plasma waves. 7. Transverse electromagnetic waves in a cold isotropic plasma. Dissipation of transverse waves in a plasma. 8. Electromagnetic waves in metals. 9. Electromagnetic waves in a waveguide with an isotropic dielectric. 10. Longitudinal waves in a hot isotropic plasma. Electron diffusion in a plasma. 11. Longitudinal waves in an isotropic degenerate plasma. Waves in a quantum plasma. 12. Ion acoustic waves in a nonisothermal plasma. Ambipolar diffusion. 13. Electromagnetic waves in a waveguide with an anisotropic plasma in a strong external magnetic field. 14. Electromagnetic waves propagating in a magnetized electron plasma along a magnetic field. 15. Electrostatic waves propagating in a magnetized electron plasma at an angle to a magnetic field. 16. Magnetohydrodynamic waves in a conducting fluid. 17. Acoustic waves in crystals. 18. Longitudinal electrostatic waves in a one-dimensional electron beam. 19. Beam instability in a plasma. 20. Instability of a current-carrying plasma -- ch. 3. Linear waves in coupled media. Slow amplitude method. 21. Coupled oscillator representation and slow amplitude method. 22. Beam-plasma system in the coupled oscillator representation. 23. Basic equations of microwave electronics. 24. Resonant Buneman instability in a current-carrying plasma in the coupled oscillator representation. 25. Dispersion function and wave absorption in dissipative systems. 26. Some effects in the interaction between waves in coupled systems. 27. Waves and their interaction in periodic structures -- ch. 4. Nonharmonic waves in dispersive media. 28. General solution to the initial-value problem. 29. Quasi-harmonic approximation. Group velocity. 30. Pulse spreading in equilibrium dispersive media. 31. Stationary-phase method. 32. Some problems for wave equations with a source -- ch. 5. Nonharmonic waves in nonequilibrium media. 33. Pulse propagation in nonequilibrium media. 34. Stationary-phase method for complex frequencies. 35. Quasi-harmonic approximation in the theory of interaction of electron beams with slowing-down media -- ch. 6. Theory of instabilities. 36. Convective and absolute instabilities. First criterion for the type of instability. 37. Saddle-point method. Second criterion for the type of instability. 38. Third Criterion for the type of instability. 39. Type of beam instability in the interaction with a slowed wave of zero group velocity in a medium. 40. Calculation of the Green's functions of unstable systems -- ch. 7. Hamiltonian method in the theory of electromagnetic radiation in dispersive media. 41. Equations for the excitation of transverse electromagnetic field oscillators. 42. Dipole radiation. 43. Radiation from a moving dipole - undulator radiation. 44. Cyclotron radiation. 45. Cherenkov effect. Anomalous and normal doppler effects. 46. Application of the Hamiltonian method to the problem of the excitation of longitudinal waves

Electromagnetic Wave Theory

Electromagnetic Wave Theory PDF

Author: J. C. Brown

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 566

ISBN-13: 1483185923

DOWNLOAD EBOOK →

Electromagnetic Wave Theory, Part 2 contains the proceedings of a Symposium on Electromagnetic Wave Theory held at Delft, The Netherlands in September 1965. The symposium provided a forum for discussing electromagnetic wave theory and tackled a wide range of topics, from propagation in nonlinear media to electromagnetic wave propagation and amplification in solid-state plasmas. Electromagnetic waves in nonlinear transmission lines with active parameters are also considered, along with the phase dependence of maser active material Q-factor on pump intensity and frequency. Comprised of four sections, this volume begins with an analysis of two modes of propagation that are coupled through parametric modulation in nonlinear media. The discussion then turns to symmetry restrictions in nonlinear, non-absorbing, non-dispersive media; nonlinear interaction between two beams of plane electromagnetic waves in an anisotropic medium; radiation in periodically non-stationary media; and electromagnetic wave propagation in time-varying media. Subsequent chapters explore the diffraction of electromagnetic waves by plasma structures; resonant electromagnetic scattering from gyrotropic plasmas; scattering and transmission of electromagnetic waves at a statistically rough boundary between two dielectric media; and developments in wavefront reconstruction. This book will be useful for students, practitioners, and researchers in physics.

Non-Linear Waves in Dispersive Media

Non-Linear Waves in Dispersive Media PDF

Author: V. I. Karpman

Publisher: Elsevier

Published: 2016-01-22

Total Pages: 199

ISBN-13: 1483187152

DOWNLOAD EBOOK →

Non-Linear Waves in Dispersive Media introduces the theory behind such topic as the gravitational waves on water surfaces. Some limiting cases of the theory, wherein proof of an asymptotic class is necessary and generated, are also provided. The first section of the book discusses the notion of linear approximation. This discussion is followed by some samples of dispersive media. Examples of stationary waves are also examined. The book proceeds with a discussion of waves of envelopes. The concept behind this subject is from the application of the methods of geometrical optics to non-linear theory. A section on non-linear waves with slowly varying parameters is given at the end of the book, along with a discussion of the evolution of electro-acoustic waves in plasma with negative dielectric permittivity. The gravitational waves on fluid surfaces are presented completely. The text will provide valuable information for physicists, mechanical engineers, students, and researchers in the field of optics, acoustics, and hydrodynamics.

Theory of Magnetostatic Waves

Theory of Magnetostatic Waves PDF

Author: Daniel D Stancil

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 224

ISBN-13: 1461393388

DOWNLOAD EBOOK →

Magnetic materials can support propagating waves of magnetization; since these are oscillations in the magnetostatic properties of the material, they are called magnetostatic waves (sometimes "magnons" or "magnetic polarons"). Under the proper circumstances these waves can exhibit, for example, either dispersive or nondispersive, isotropic or anisotropic propagation, nonreciprocity, frequency-selective nonlinearities, soliton propagation, and chaotic behavior. This rich variety of behavior has led to a number of proposed applications in microwave and optical signal processing. This textbook begins by discussing the basic physics of magnetism in magnetic insulators and the propagation of electromagnetic waves in anisotropic dispersive media. It then treats magnetostatic modes, describing how the modes are excited, how they propagate, and how they interact with light. There are problems at the end of each chapter; many of these serve to expand or explain the material in the text. To enhance the book's usefulness as a reference, the answers are given for many of the problems. The bibliographies for each chapter give an entry to the research literature. Magnetostatic Waves will thus serve not only as an introduction to an active area of research, but also as a handy reference for workers in the field.

Spin Waves

Spin Waves PDF

Author: Daniel D. Stancil

Publisher: Springer Science & Business Media

Published: 2009-04-05

Total Pages: 348

ISBN-13: 0387778659

DOWNLOAD EBOOK →

This book begins by introducing magnetism and discusses magnetic properties of materials, magnetic moments of atoms and ions, and the elements important to magnetism. It covers magnetic susceptibilities and electromagnetic waves in anisotropic dispersive media among other topics. There are problems at the end of each chapter, many of which serve to expand or explain the material in the text. The bibliographies for each chapter give an entry to the research literature.

Wave Propagation in a Dispersive Medium

Wave Propagation in a Dispersive Medium PDF

Author: Paul R. McIsaac

Publisher:

Published: 1966

Total Pages: 112

ISBN-13:

DOWNLOAD EBOOK →

The report examines the consequences of temperal and spatial dispersion for the power flow and boundary conditions for electromagnetic wave propagation in dispersive media. The theory is applied to propagation in electron streams and in ferrites. (Author).

Wave Propagation in Electromagnetic Media

Wave Propagation in Electromagnetic Media PDF

Author: Julian L. Davis

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 303

ISBN-13: 1461232848

DOWNLOAD EBOOK →

This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical tech niques, and on showing how these methods of mathematical physics can be effective in unifying the physics of wave propagation in electromagnetic media. Chapter 1 presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations, and their appli cations to electromagnetic wave propagation under a variety of conditions.