Singular Integral Equations

Singular Integral Equations PDF

Author: Ricardo Estrada

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 433

ISBN-13: 1461213827

DOWNLOAD EBOOK →

Many physical problems that are usually solved by differential equation techniques can be solved more effectively by integral equation methods. This work focuses exclusively on singular integral equations and on the distributional solutions of these equations. A large number of beautiful mathematical concepts are required to find such solutions, which in tum, can be applied to a wide variety of scientific fields - potential theory, me chanics, fluid dynamics, scattering of acoustic, electromagnetic and earth quake waves, statistics, and population dynamics, to cite just several. An integral equation is said to be singular if the kernel is singular within the range of integration, or if one or both limits of integration are infinite. The singular integral equations that we have studied extensively in this book are of the following type. In these equations f (x) is a given function and g(y) is the unknown function. 1. The Abel equation x x) = l g (y) d 0

Multidimensional Weakly Singular Integral Equations

Multidimensional Weakly Singular Integral Equations PDF

Author: Gennadi Vainikko

Publisher: Springer

Published: 2006-11-15

Total Pages: 169

ISBN-13: 354047773X

DOWNLOAD EBOOK →

The final aim of the book is to construct effective discretization methods to solve multidimensional weakly singular integral equations of the second kind on a region of Rn e.g. equations arising in the radiation transfer theory. To this end, the smoothness of the solution is examined proposing sharp estimates of the growth of the derivatives of the solution near the boundary G. The superconvergence effect of collocation methods at the collocation points is established. This is a book for graduate students and researchers in the fields of analysis, integral equations, mathematical physics and numerical methods. No special knowledge beyond standard undergraduate courses is assumed.

Singular Integral Equations

Singular Integral Equations PDF

Author: E.G. Ladopoulos

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 569

ISBN-13: 3662042916

DOWNLOAD EBOOK →

The present book deals with the finite-part singular integral equations, the multidimensional singular integral equations and the non-linear singular integral equations, which are currently used in many fields of engineering mechanics with applied character, like elasticity, plasticity, thermoelastoplasticity, viscoelasticity, viscoplasticity, fracture mechanics, structural analysis, fluid mechanics, aerodynamics and elastodynamics. These types of singular integral equations form the latest high technology on the solution of very important problems of solid and fluid mechanics and therefore special attention should be given by the reader of the present book, who is interested for the new technology of the twentieth-one century. Chapter 1 is devoted with a historical report and an extended outline of References, for the finite-part singular integral equations, the multidimensional singular integral equations and the non-linear singular integral equations. Chapter 2 provides a finite-part singular integral representation analysis in Lp spaces and in general Hilbert spaces. In the same Chapter are investigated all possible approximation methods for the numerical evaluation of the finite-part singular integral equations, as closed form solutions for the above type of integral equations are available only in simple cases. Also, Chapter 2 provides further a generalization of the well known Sokhotski-Plemelj formulae and the Nother theorems, for the case of a finite-part singular integral equation.

Applied Singular Integral Equations

Applied Singular Integral Equations PDF

Author: B. N. Mandal

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 274

ISBN-13: 1439876215

DOWNLOAD EBOOK →

The book is devoted to varieties of linear singular integral equations, with special emphasis on their methods of solution. It introduces the singular integral equations and their applications to researchers as well as graduate students of this fascinating and growing branch of applied mathematics.

Methods of Analysis and Solutions of Crack Problems

Methods of Analysis and Solutions of Crack Problems PDF

Author: George C. Sih

Publisher: Springer Science & Business Media

Published: 1973-01-31

Total Pages: 578

ISBN-13: 9789001798604

DOWNLOAD EBOOK →

It is weH known that the traditional failure criteria cannot adequately explain failures which occur at a nominal stress level considerably lower than the ultimate strength of the material. The current procedure for predicting the safe loads or safe useful life of a structural member has been evolved around the discipline oflinear fracture mechanics. This approach introduces the concept of a crack extension force which can be used to rank materials in some order of fracture resistance. The idea is to determine the largest crack that a material will tolerate without failure. Laboratory methods for characterizing the fracture toughness of many engineering materials are now available. While these test data are useful for providing some rough guidance in the choice of materials, it is not clear how they could be used in the design of a structure. The understanding of the relationship between laboratory tests and fracture design of structures is, to say the least, deficient. Fracture mechanics is presently at astandstill until the basic problems of scaling from laboratory models to fuH size structures and mixed mode crack propagation are resolved. The answers to these questions require some basic understanding ofthe theory and will not be found by testing more specimens. The current theory of fracture is inadequate for many reasons. First of aH it can only treat idealized problems where the applied load must be directed normal to the crack plane.

One-Dimensional Linear Singular Integral Equations

One-Dimensional Linear Singular Integral Equations PDF

Author: I. Gohberg

Publisher: Springer Science & Business Media

Published: 1992-01-01

Total Pages: 280

ISBN-13: 9783764325848

DOWNLOAD EBOOK →

This book is an introduction to the theory of linear one-dimensional singular integral equations. It is essentually a graduate textbook. Singular integral equations have attracted more and more attention, because, on one hand, this class of equations appears in many applications and, on the other, it is one of a few classes of equations which can be solved in explicit form. In this book material of the monograph [2] of the authors on one-dimensional singular integral operators is widely used. This monograph appeared in 1973 in Russian and later in German translation [3]. In the final text version the authors included many addenda and changes which have in essence changed character, structure and contents of the book and have, in our opinion, made it more suitable for a wider range of readers. Only the case of singular integral operators with continuous coefficients on a closed contour is considered herein. The case of discontinuous coefficients and more general contours will be considered in the second volume. We are grateful to the editor Professor G. Heinig of the volume and to the translators Dr. B. Luderer and Dr. S. Roch, and to G. Lillack, who did the typing of the manuscript, for the work they have done on this volume.

Singular Integral Operators

Singular Integral Operators PDF

Author: Solomon G. Mikhlin

Publisher: Springer Science & Business Media

Published: 1987

Total Pages: 530

ISBN-13: 9783540159674

DOWNLOAD EBOOK →

The present edition differs from the original German one mainly in the following addi tional material: weighted norm inequalities for maximal functions and singular opera tors (§ 12, Chap. XI), polysingular integral operators and pseudo-differential operators (§§ 7, 8, Chap. XII), and spline approximation methods for solving singular integral equations (§ 4, Chap. XVII). Furthermore, we added two subsections on polynomial approximation methods for singular integral equations over an interval or with dis continuous coefficients (Nos. 3.6 and 3.7, Chap. XVII). In many places we incorporated new results which, in the vast majority, are from the last five years after publishing the German edition (note that the references are enlarged by about 150 new titles). S. G. Mikhlin wrote §§ 7, 8, Chap. XII, and the other additions were drawn up by S. Prossdorf. We wish to express our deepest gratitude to Dr. A. Bottcher and Dr. R. Lehmann who together translated the text into English carefully and with remarkable expertise.

Methods of Singular Integral Equations

Methods of Singular Integral Equations PDF

Author: Abduhamid Dzhuraev

Publisher: Chapman and Hall/CRC

Published: 1992-07-19

Total Pages: 336

ISBN-13:

DOWNLOAD EBOOK →

Considers the class of singular integral equations on bounded two-dimensional multiply connected domains on the plane, and their applications to the theory of general elliptic systems of partial differential equations.

Multidimensional Singular Integrals and Integral Equations

Multidimensional Singular Integrals and Integral Equations PDF

Author: S. G. Mikhlin

Publisher: Elsevier

Published: 2014-07-10

Total Pages: 273

ISBN-13: 1483164497

DOWNLOAD EBOOK →

Multidimensional Singular Integrals and Integral Equations presents the results of the theory of multidimensional singular integrals and of equations containing such integrals. Emphasis is on singular integrals taken over Euclidean space or in the closed manifold of Liapounov and equations containing such integrals. This volume is comprised of eight chapters and begins with an overview of some theorems on linear equations in Banach spaces, followed by a discussion on the simplest properties of multidimensional singular integrals. Subsequent chapters deal with compounding of singular integrals; properties of the symbol, with particular reference to Fourier transform of a kernel and the symbol of a singular operator; singular integrals in Lp spaces; and singular integral equations. The differentiation of integrals with a weak singularity is also considered, along with the rule for the multiplication of the symbols in the general case. The final chapter describes several applications of multidimensional singular integral equations to boundary problems in mathematical physics. This book will be of interest to mathematicians and students of mathematics.

Wavelet Based Approximation Schemes for Singular Integral Equations

Wavelet Based Approximation Schemes for Singular Integral Equations PDF

Author: Madan Mohan Panja

Publisher: CRC Press

Published: 2020-06-07

Total Pages: 466

ISBN-13: 0429534280

DOWNLOAD EBOOK →

Many mathematical problems in science and engineering are defined by ordinary or partial differential equations with appropriate initial-boundary conditions. Among the various methods, boundary integral equation method (BIEM) is probably the most effective. It’s main advantage is that it changes a problem from its formulation in terms of unbounded differential operator to one for an integral/integro-differential operator, which makes the problem tractable from the analytical or numerical point of view. Basically, the review/study of the problem is shifted to a boundary (a relatively smaller domain), where it gives rise to integral equations defined over a suitable function space. Integral equations with singular kernels areamong the most important classes in the fields of elasticity, fluid mechanics, electromagnetics and other domains in applied science and engineering. With the advancesin computer technology, numerical simulations have become important tools in science and engineering. Several methods have been developed in numerical analysis for equations in mathematical models of applied sciences. Widely used methods include: Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM) and Galerkin Method (GM). Unfortunately, none of these are versatile. Each has merits and limitations. For example, the widely used FDM and FEM suffers from difficulties in problem solving when rapid changes appear in singularities. Even with the modern computing machines, analysis of shock-wave or crack propagations in three dimensional solids by the existing classical numerical schemes is challenging (computational time/memory requirements). Therefore, with the availability of faster computing machines, research into the development of new efficient schemes for approximate solutions/numerical simulations is an ongoing parallel activity. Numerical methods based on wavelet basis (multiresolution analysis) may be regarded as a confluence of widely used numerical schemes based on Finite Difference Method, Finite Element Method, Galerkin Method, etc. The objective of this monograph is to deal with numerical techniques to obtain (multiscale) approximate solutions in wavelet basis of different types of integral equations with kernels involving varieties of singularities appearing in the field of elasticity, fluid mechanics, electromagnetics and many other domains in applied science and engineering.