Memory Mass Storage

Memory Mass Storage PDF

Author: Giovanni Campardo

Publisher: Springer Science & Business Media

Published: 2011-02-04

Total Pages: 498

ISBN-13: 3642147526

DOWNLOAD EBOOK →

Memory Mass Storage describes the fundamental storage technologies, like Semiconductor, Magnetic, Optical and Uncommon, detailing the main technical characteristics of the storage devices. It deals not only with semiconductor and hard disk memory, but also with different ways to manufacture and assembly them, and with their application to meet market requirements. It also provides an introduction to the epistemological issues arising in defining the process of remembering, as well as an overview on human memory, and an interesting excursus about biological memories and their organization, to better understand how the best memory we have, our brain, is able to imagine and design memory.

USB Mass Storage

USB Mass Storage PDF

Author: Jan Axelson

Publisher: lakeview research llc

Published: 2006

Total Pages: 304

ISBN-13: 1931448043

DOWNLOAD EBOOK →

This developer's guide for designers and programmers of mass-storage devices that use the Universal Serial Bus (USB) interface provides developers with information on how to choose storage media, interface the media to a microcontroller or other CPU, and write device firmware to access the media and perform USB communications. Comparisons of popular storage-media options to help users choose a media type for a project are included, and the types described cover hard drives and flash-memory cards such as the MultiMediaCard (MMC), Secure Digital (SD) card, and CompactFlash card. Helpful tips on developing an embedded host that can access USB mass-storage devices are also covered.

Algorithmic Studies in Mass Storage Systems

Algorithmic Studies in Mass Storage Systems PDF

Author: C.K. Wong

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 421

ISBN-13: 3642693520

DOWNLOAD EBOOK →

A major technological trend for large database systems has been the introduction of ever-larger mass storage systems. This allows computing centers and business data processing installations to maintain on line their program libraries, less frequently used data files, transaction logs and backup copies under unified system control. Tapes, disks and drums are classical examples of mass storage media. The more recent IBM 3851 Mass Storage Facility, part of the IBM 3850 Mass Storage System, represents a new direction in mass storage development, namely, it is two-dimensional. With the maturity of magnetic bubble technology, more sophisticated, massive, multi-trillion-bit storage systems are not far in the future. While large in capacity, mass storage systems have in general relatively long access times. Since record access probabilities are usually not uniform, various algorithms have been devised to position the records to decrease the average access time. The first two chapters of this book are devoted mainly to such algorithmic studies in linear and two-dimensional mass storage systems. In the third chapter, we view the bubble memory as more than a storage medium. In fact, we discuss different structures where routine operations, such as data rearrangement, sorting, searching, etc., can be done in the memory itself, freeing the CPU for more complicated tasks. The problems discussed in this book are combinatorial in nature.

Advances in Non-volatile Memory and Storage Technology

Advances in Non-volatile Memory and Storage Technology PDF

Author: Yoshio Nishi

Publisher: Elsevier

Published: 2014-06-24

Total Pages: 456

ISBN-13: 0857098098

DOWNLOAD EBOOK →

New solutions are needed for future scaling down of nonvolatile memory. Advances in Non-volatile Memory and Storage Technology provides an overview of developing technologies and explores their strengths and weaknesses. After an overview of the current market, part one introduces improvements in flash technologies, including developments in 3D NAND flash technologies and flash memory for ultra-high density storage devices. Part two looks at the advantages of designing phase change memory and resistive random access memory technologies. It looks in particular at the fabrication, properties, and performance of nanowire phase change memory technologies. Later chapters also consider modeling of both metal oxide and resistive random access memory switching mechanisms, as well as conductive bridge random access memory technologies. Finally, part three looks to the future of alternative technologies. The areas covered include molecular, polymer, and hybrid organic memory devices, and a variety of random access memory devices such as nano-electromechanical, ferroelectric, and spin-transfer-torque magnetoresistive devices. Advances in Non-volatile Memory and Storage Technology is a key resource for postgraduate students and academic researchers in physics, materials science, and electrical engineering. It is a valuable tool for research and development managers concerned with electronics, semiconductors, nanotechnology, solid-state memories, magnetic materials, organic materials, and portable electronic devices. Provides an overview of developing nonvolatile memory and storage technologies and explores their strengths and weaknesses Examines improvements to flash technology, charge trapping, and resistive random access memory Discusses emerging devices such as those based on polymer and molecular electronics, and nanoelectromechanical random access memory (RAM)

High Performance Computing

High Performance Computing PDF

Author: Thomas Sterling

Publisher: Morgan Kaufmann

Published: 2017-12-05

Total Pages: 718

ISBN-13: 0124202152

DOWNLOAD EBOOK →

High Performance Computing: Modern Systems and Practices is a fully comprehensive and easily accessible treatment of high performance computing, covering fundamental concepts and essential knowledge while also providing key skills training. With this book, domain scientists will learn how to use supercomputers as a key tool in their quest for new knowledge. In addition, practicing engineers will discover how supercomputers can employ HPC systems and methods to the design and simulation of innovative products, and students will begin their careers with an understanding of possible directions for future research and development in HPC. Those who maintain and administer commodity clusters will find this textbook provides essential coverage of not only what HPC systems do, but how they are used. Covers enabling technologies, system architectures and operating systems, parallel programming languages and algorithms, scientific visualization, correctness and performance debugging tools and methods, GPU accelerators and big data problems Provides numerous examples that explore the basics of supercomputing, while also providing practical training in the real use of high-end computers Helps users with informative and practical examples that build knowledge and skills through incremental steps Features sidebars of background and context to present a live history and culture of this unique field Includes online resources, such as recorded lectures from the authors’ HPC courses

Embedded Memories for Nano-Scale VLSIs

Embedded Memories for Nano-Scale VLSIs PDF

Author: Kevin Zhang

Publisher: Springer Science & Business Media

Published: 2009-04-21

Total Pages: 390

ISBN-13: 0387884971

DOWNLOAD EBOOK →

Kevin Zhang Advancement of semiconductor technology has driven the rapid growth of very large scale integrated (VLSI) systems for increasingly broad applications, incl- ing high-end and mobile computing, consumer electronics such as 3D gaming, multi-function or smart phone, and various set-top players and ubiquitous sensor and medical devices. To meet the increasing demand for higher performance and lower power consumption in many different system applications, it is often required to have a large amount of on-die or embedded memory to support the need of data bandwidth in a system. The varieties of embedded memory in a given system have alsobecome increasingly more complex, ranging fromstatictodynamic and volatile to nonvolatile. Among embedded memories, six-transistor (6T)-based static random access memory (SRAM) continues to play a pivotal role in nearly all VLSI systems due to its superior speed and full compatibility with logic process technology. But as the technology scaling continues, SRAM design is facing severe challenge in mainta- ing suf?cient cell stability margin under relentless area scaling. Meanwhile, rapid expansion in mobile application, including new emerging application in sensor and medical devices, requires far more aggressive voltage scaling to meet very str- gent power constraint. Many innovative circuit topologies and techniques have been extensively explored in recent years to address these challenges.