mechanistic studies of DNA replication and genetic recombination

mechanistic studies of DNA replication and genetic recombination PDF

Author: Bruce Alberts

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 1034

ISBN-13: 032314179X

DOWNLOAD EBOOK →

Mechanistic Studies of DNA Replication and Genetic Recombination emerged from a symposium on DNA replication and genetic recombination held from March 16-21, 1980 in Keystone, Colorado. The event featured 30 plenary session talks, 13 workshop discussion groups, and the 210 poster sessions. The studies described in this book are paving the way for the elucidation of other basic genetic mechanisms, including ""new"" areas in molecular genetics such as those of eukaryotic gene expression and the transposition of mobile genetic elements. This book is divided into 10 parts: summaries of workshop discussion groups (Part I); studies on eukaryotic model systems for DNA replication (Part II); studies on bacterial replication origins (Part III); studies on replication origins of bacterial phages and plasmids (Part IV); studies on eukaryotic replication origins (Part V); studies on prokaryotic replication enzymology (Part VI); studies on eukaryotic replication enzymology (Part VII); studies on the fidelity of DNA replication (Part VIII); studies on DNA topoisomerases (Part IX); and studies of genetic recombination mechanisms (Part X).

DNA Replication, Recombination, and Repair

DNA Replication, Recombination, and Repair PDF

Author: Fumio Hanaoka

Publisher: Springer

Published: 2016-01-22

Total Pages: 548

ISBN-13: 443155873X

DOWNLOAD EBOOK →

This book is a comprehensive review of the detailed molecular mechanisms of and functional crosstalk among the replication, recombination, and repair of DNA (collectively called the "3Rs") and the related processes, with special consciousness of their biological and clinical consequences. The 3Rs are fundamental molecular mechanisms for organisms to maintain and sometimes intentionally alter genetic information. DNA replication, recombination, and repair, individually, have been important subjects of molecular biology since its emergence, but we have recently become aware that the 3Rs are actually much more intimately related to one another than we used to realize. Furthermore, the 3R research fields have been growing even more interdisciplinary, with better understanding of molecular mechanisms underlying other important processes, such as chromosome structures and functions, cell cycle and checkpoints, transcriptional and epigenetic regulation, and so on. This book comprises 7 parts and 21 chapters: Part 1 (Chapters 1–3), DNA Replication; Part 2 (Chapters 4–6), DNA Recombination; Part 3 (Chapters 7–9), DNA Repair; Part 4 (Chapters 10–13), Genome Instability and Mutagenesis; Part 5 (Chapters 14–15), Chromosome Dynamics and Functions; Part 6 (Chapters 16–18), Cell Cycle and Checkpoints; Part 7 (Chapters 19–21), Interplay with Transcription and Epigenetic Regulation. This volume should attract the great interest of graduate students, postdoctoral fellows, and senior scientists in broad research fields of basic molecular biology, not only the core 3Rs, but also the various related fields (chromosome, cell cycle, transcription, epigenetics, and similar areas). Additionally, researchers in neurological sciences, developmental biology, immunology, evolutionary biology, and many other fields will find this book valuable.

DNA Helicases and DNA Motor Proteins

DNA Helicases and DNA Motor Proteins PDF

Author: Maria Spies

Publisher: Springer Science & Business Media

Published: 2012-11-19

Total Pages: 308

ISBN-13: 1461450373

DOWNLOAD EBOOK →

In recent years, a number of groundbreaking structural and mechanistic studies deepened our understanding of helicase mechanisms and established new approaches for their analyses. Many fundamental mechanistic questions ranging from the mechanism of force generation, mechanochemical coupling to distinct mechanisms by which the same enzyme translocates on DNA removing obstacles, unwinds DNA and/or remodels nucleoprotein complexes, however, remain to be answered. It is even less understood how the helicase motors are incorporated into a wide range of genome maintenance and repair machines. The field has reached a stage when the studies of molecular mechanisms and basic biology of helicases can and shall be integrated with the studies of development, cancer and longevity. The objective of this book is to provide the first systematic overview of structure, function and regulation of DNA helicases and related molecular motors. By integrating the knowledge obtained through the diverse technical approaches ranging from single-molecule biophysics to cellular and molecular biological studies the editors aim to provide a unified view on how helicases function in the cell, are regulated in response to different cellular stresses and are integrated into large macromolecular assemblies to form a complex and adaptive living system.

DNA Replication and Human Disease

DNA Replication and Human Disease PDF

Author: Melvin L. DePamphilis

Publisher: CSHL Press

Published: 2006

Total Pages: 814

ISBN-13: 0879697660

DOWNLOAD EBOOK →

At least 5 trillion cell divisions are required for a fertilized egg to develop into an adult human, resulting in the production of more than 20 trillion meters of DNA! And yet, with only two exceptions, the genome is replicated once and only once each time a cell divides. How is this feat accomplished? What happens when errors occur? This book addresses these questions by presenting a thorough analysis of the molecular events that govern DNA replication in eukaryotic cells. The association between genome replication and cell proliferation, disease pathogenesis, and the development of targeted therapeutics is also addressed. At least 160 proteins are involved in replicating the human genome, and at least 40 diseases are caused by aberrant DNA replication, 35 by mutations in genes required for DNA replication or repair, 7 by mutations generated during mitochondrial DNA replication, and more than 40 by DNA viruses. Consequently, a growing number of therapeutic drugs are targeted to DNA replication proteins. This authoritative volume provides a rich source of information for researchers, physicians, and teachers, and will stimulate thinking about the relevance of DNA replication to human disease.

DNA Repair Mechanisms

DNA Repair Mechanisms PDF

Author: ICN Pharmaceuticals, inc

Publisher:

Published: 1978

Total Pages: 840

ISBN-13:

DOWNLOAD EBOOK →

DNA Repair Mechanisms is an account of the proceedings at a major international conference on DNA Repair Mechanisms held at Keystone, Colorado on February 1978. The conference discusses through plenary sessions the overall standpoint of DNA repair. The papers presented and other important documents, such as short summaries by the workshop session conveners, comprise this book. The compilation describes the opposing views, those that agree and dispute about certain topic areas. This book, divided into 15 parts, is arranged according to the proceedings in the conference. The plenary sessions are ...

Genome Stability and Human Diseases

Genome Stability and Human Diseases PDF

Author: Heinz-Peter Nasheuer

Publisher: Springer Science & Business Media

Published: 2009-12-11

Total Pages: 346

ISBN-13: 9048134714

DOWNLOAD EBOOK →

Since the establishment of the DNA structure researchers have been highly interested in the molecular basis of the inheritance of genes and of genetic disorders. Scientific investigations of the last two decades have shown that, in addition to oncogenic viruses and signalling pathways alterations, genomic instability is important in the development of cancer. This view is supported by the findings that aneuploidy, which results from chromosome instability, is one of the hallmarks of cancer cells. Chromosomal instability also underpins our fundamental principles of understanding tumourigenesis: It thought that cancer arises from the sequential acquisition of genetic alterations in specific genes. In this hypothesis, these rare genetic events represent rate-limiting ‘bottlenecks’ in the clonal evolution of a cancer, and pre-cancerous cells can evolve into neoplastic cells through the acquisition of somatic mutations. This book is written by international leading scientists in the field of genome stability. Chapters are devoted to genome stability and anti-cancer drug targets, histone modifications, chromatin factors, DNA repair, apoptosis and many other key areas of research. The chapters give insights into the newest development of the genome stability and human diseases and bring the current understanding of the mechanisms leading to chromosome instability and their potential for clinical impact to the reader.