Small Fatigue Cracks

Small Fatigue Cracks PDF

Author: K.S. Ravichandran

Publisher: Elsevier

Published: 1999-09-30

Total Pages: 511

ISBN-13: 0080569706

DOWNLOAD EBOOK →

This book contains the fully peer-reviewed papers presented at the Third Engineering Foundation Conference on Small Fatigue Cracks, held under the chairmanship of K.S. Ravichandran and Y. Murakami during December 6-11, 1998, at the Turtle Bay Hilton, Oahu, Hawaii. This book presents a state-of-the-art description of the mechanics, mechanisms and applications of small fatigue cracks by most of the world's leading experts in this field. Topics ranging from the mechanisms of crack initiation, small crack behavior in metallic, intermetallic, ceramic and composite materials, experimental measurement, mechanistic and theoretical models, to the role of small cracks in fretting fatigue and the application of small crack results to the aging aircraft and high-cycle fatigue problems, are covered.

Mechanics of Fatigue

Mechanics of Fatigue PDF

Author: Vladimir V. Bolotin

Publisher: CRC Press

Published: 2020-07-09

Total Pages: 210

ISBN-13: 042960582X

DOWNLOAD EBOOK →

Mechanics of Fatigue addresses the range of topics concerning damage, fatigue, and fracture of engineering materials and structures. The core of this resource builds upon the synthesis of micro- and macro-mechanics of fracture. In micromechanics, both the modeling of mechanical phenomena on the level of material structure and the continuous approach are based on the use of certain internal field parameters characterizing the dispersed micro-damage. This is referred to as continuum damage mechanics. The author develops his own theory for macromechanics, called analytical fracture mechanics. This term means the system cracked body - loading or loading device - is considered as a mechanical system and the tools of analytical (rational) mechanics are applied thoroughly to describe crack propagation until the final failure. Chapter discuss: preliminary information on fatigue and engineering methods for design of machines and structures against failures caused by fatigue fatigue crack nucleation, including microstructural and continuous models theory of fatigue crack propagation fatigue crack growth in linear elastic materials subject to dispersed damage fatigue cracks in elasto-plastic material, including crack growth retardation due to overloading as well as quasistationary approximation fatigue and related phenomena in hereditary solids application of the theory fatigue crack growth considering environmental factors unidirectional fiber composites with ductile matrix and brittle, initially continuous fibers laminate composites Mechanics of Fatigue serves students dealing with mechanical aspects of fatigue, conducting research in fracture mechanics, structural safety, mechanics of composites, as well as modern branches of mechanics of solids and structures.

Fatigue Crack Growth Thresholds, Endurance Limits, and Design

Fatigue Crack Growth Thresholds, Endurance Limits, and Design PDF

Author: J. C. Newman

Publisher: ASTM International

Published: 2000

Total Pages: 436

ISBN-13: 0803126247

DOWNLOAD EBOOK →

Annotation Contains 24 papers from the November, 1998 symposium of the same name, sponsored by the ASTM Committee E8 on Fatigue and Fracture, and presented by Newman and Piascik (both of the NASA Langley Research Center). The papers focus on such areas as fatigue-crack growth threshold mechanisms, loading and specimen-type effects, analyses of fatigue-crack-growth-threshold behavior, and applications of threshold concepts and endurance limits to aerospace and structural materials. Annotation copyrighted by Book News, Inc., Portland, OR.

Fatigue and Fracture Mechanics of High Risk Parts

Fatigue and Fracture Mechanics of High Risk Parts PDF

Author: Bahram Farahmand

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 386

ISBN-13: 1461560098

DOWNLOAD EBOOK →

In the preliminary stage of designing new structural hardware that must perform a given mission in a fluctuating load environment, there are several factors the designers should consider. Trade studies for different design configurations should be performed and, based on strength and weight considerations, among others, an optimum configuration selected. The selected design must be able to withstand the environment in question without failure. Therefore, a comprehen sive structural analysis that consists of static, dynamic, fatigue, and fracture is necessary to ensure the integrity of the structure. During the past few decades, fracture mechanics has become a necessary discipline for the solution of many structural problems. These problems include the prevention of failures resulting from preexisting cracks in the parent material, welds or that develop under cyclic loading environment during the life of the structure. The importance of fatigue and fracture in nuclear, pressure vessel, aircraft, and aerospace structural hardware cannot be overemphasized where safety is of utmost concern. This book is written for the designer and strength analyst, as well as for the material and process engineer who is concerned with the integrity of the structural hardware under load-varying environments in which fatigue and frac ture must be given special attention. The book is a result of years of both acade mic and industrial experiences that the principal author and co-authors have accumulated through their work with aircraft and aerospace structures.

Modelling of TMF Crack Growth in Polycrystalline Gas Turbine Alloys

Modelling of TMF Crack Growth in Polycrystalline Gas Turbine Alloys PDF

Author: Jordi Loureiro-Homs

Publisher: Linköping University Electronic Press

Published: 2020-10-07

Total Pages: 34

ISBN-13: 9179297927

DOWNLOAD EBOOK →

The main objective of the work presented in this Licentiate of Engineering thesis is to investigate and model the fatigue crack propagation behaviour of the nickel-based superalloy Inconel 792, with special attention to the industrial lifing of high-temperature components. In-phase (IP) crack propagation tests have been performed at different temperatures and loading regimes, including extended hold times. The observations from these tests have been the basis for establishing several hypotheses to describe the crack growth behaviour, which progressively have been verified experimentally and numerically. Most prominently, it has been observed that crack closure has a substantial impact on crack growth and can explain, to a large degree, the crack growth behaviour for this material under the conditions studied. This phenomenon has been observed experimentally and modelled numerically to extend further the precision of the methodology. Huvudsyftet med arbetet som presenteras i denna licentiat avhandling är att undersöka och modellera utmattnings sprickväxtbeteendet hos den nickelbaserade superlegeringen Inconel 792, med särskild uppmärksamhet riktad mot liuslängsdmodellering av högtemperaturkomponenter i en industriell kontext. I-fas (IP) sprickväxtprov har utförts vid olika temperaturer och belastningsregimer, inklusive hålltider. Observationerna från dessa tester har legat till grund för hypoteser för att förklara spricktillväxtbeteende, vilka successivt har verifierats experimentellt och numeriskt. Mest framträdande har det observerats att sprickslutning har en väsentlig inverkan på sprickväxten, och kan i stor utsträckning förklara sprickväxten för detta material under studerade förhållanden. Detta fenomen har observerats experimentellt och modellerats numeriskt för att förbättra metodens precision.

Handbook of Fatigue Crack Propagation in Metallic Structures

Handbook of Fatigue Crack Propagation in Metallic Structures PDF

Author: A. Carpinteri

Publisher: Newnes

Published: 2012-12-02

Total Pages: 834

ISBN-13: 0444600329

DOWNLOAD EBOOK →

The purpose of this Handbook is to provide a review of the knowledge and experiences in the field of fatigue fracture mechanics. It is well-known that engineering structures can fail due to cyclic loading. For instance, a cyclically time-varying loading reduces the structure strength and can provoke a fatigue failure consisting of three stages: (a) crack initiation (b) crack propagation and (c) catastrophic failure. Since last century many scientists have tried to understand the reasons for the above-mentioned failures and how to prevent them. This Handbook contains valuable contributions from leading experts within the international scientific community and covers many of the important problems associated with the fatigue phenomena in civil, mechanical and nuclear engineering.