Mechanical Properties and Characterization of Additively Manufactured Materials

Mechanical Properties and Characterization of Additively Manufactured Materials PDF

Author: Ravi. K. Kumar

Publisher: CRC Press

Published: 2023-09-13

Total Pages: 341

ISBN-13: 1000928950

DOWNLOAD EBOOK →

The book highlights mechanical, thermal, electrical, and magnetic properties, and characterization of additive manufactured products in a single volume. It will serve as an ideal reference text for graduate students and academic researchers in diverse engineering fields including industrial, manufacturing, and materials science. This text Explains mechanical properties like hardness, tensile strength, impact strength, and flexural strength of additive manufactured components Discusses characterization of components fabricated by different additive manufacturing processes including fusion deposition modeling, and selective laser sintering Highlights corrosion behavior of additive manufactured polymers, metals, and composites Covers thermal, electrical, and magnetic properties of additively manufactured materials Illustrates intrinsic features and their Influence on mechanical properties of additive manufactured products This text discusses properties, wear behavior and characterization of components produced by additive manufacturing technology. These products find applications in diverse fields including design, manufacturing and tooling, aerospace, automotive industry, and biomedical industry. It will further help the readers in understanding the parameters that influence the mechanical behavior and characterization of components manufactured by additive manufacturing processes. It will serve as an ideal reference text for graduate students and academic researchers in the fields of industrial engineering, manufacturing engineering, automotive engineering, aerospace engineering, and materials science.

Stereolithography

Stereolithography PDF

Author: Paulo Jorge Bártolo

Publisher: Springer Science & Business Media

Published: 2011-03-18

Total Pages: 345

ISBN-13: 0387929045

DOWNLOAD EBOOK →

Stereolithography: Materials, Processes and Applications will focus on recent advances in stereolithography covering aspects related to the most recent advances in the field, in terms of fabrication processes (two-photon polymerization, micro-stereolithography, infrared stereolithography and stereo-thermal-lithography), materials (novel resins, hydrogels for medical applications and highly reinforced resins with ceramics and metals), computer simulation and applications.

Mechanics of Additive and Advanced Manufacturing, Volume 8

Mechanics of Additive and Advanced Manufacturing, Volume 8 PDF

Author: Sharlotte Kramer

Publisher: Springer

Published: 2018-08-23

Total Pages: 98

ISBN-13: 3319950835

DOWNLOAD EBOOK →

Mechanics of Additive and Advanced Manufacturing, Volume 8 of the Proceedings of the 2018 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the eighth volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies, including: Fatigue & Fracture in AM Materials Additively Manufactured Metals & Structures AM Process Characterization Processing & Mechanical Behavior of AM Materials Dynamic Response of AM Materials Additively Manufactured Polymers & Composites

Additive and Traditionally Manufactured Components

Additive and Traditionally Manufactured Components PDF

Author: Joshua Pelleg

Publisher: Elsevier

Published: 2020-04-30

Total Pages: 656

ISBN-13: 012821919X

DOWNLOAD EBOOK →

Additive and Traditionally Manufactured Components: A Comparative Analysis of Mechanical Properties looks at the mechanical properties of materials produced by additive manufacturing (AM) and compares them with conventional methods. Since the production of objects by AM techniques can used in a broad array of materials, the alloys presented are the ones most commonly produced by AM - Al alloys, Ti alloys and steel. The book explores the six main types of techniques: Fused Deposition Method (FDM), Powder Bed Fusion (PBF), Inkjet Printing, Stereolithography (SLA), Direct Energy Deposition (DED) and Laminated Object Manufacturing (LOM), and follows with the techniques being utilized for fabrication. Testing of AM fabricated specimens, including tension, compression and hardness is included, along with a comparison of those results to specimens obtained by conventional fabrication methods. Topics covered include static deformation, time dependent deformation (creep), cyclic deformation (fatigue) and fracture in specimens. The book concludes with a review of the mechanical properties of nanoscale specimens obtained by AM. Thoroughly explores AM processes that can be utilized for experimental design Includes a review of dislocations observed in specimens obtained by AM Compares the impact of both additive and traditional manufacturing techniques on the mechanical properties of materials

Additively Manufactured Inconel 718

Additively Manufactured Inconel 718 PDF

Author: Dunyong Deng

Publisher: Linköping University Electronic Press

Published: 2018-01-24

Total Pages: 69

ISBN-13: 9176853837

DOWNLOAD EBOOK →

Additive manufacturing (AM), also known as 3D printing, has gained significant interest in aerospace, energy, automotive and medical industries due to its capabilities of manufacturing components that are either prohibitively costly or impossible to manufacture by conventional processes. Among the various additive manufacturing processes for metallic components, electron beam melting (EBM) and selective laser melting (SLM) are two of the most widely used powder bed based processes, and have shown great potential for manufacturing high-end critical components, such as turbine blades and customized medical implants. The futures of the EBM and SLM are doubtlessly promising, but to fully realize their potentials there are still many challenges to overcome. Inconel 718 (IN718) is a nickel-base superalloy and has impressive combination of good mechanical properties and low cost. Though IN718 is being mostly used as a turbine disk material now, the initial introduction of IN718 was to overcome the poor weldability of superalloys in 1960s, since sluggish precipitation of strengthening phases ?’/?’’ enables good resistance to strain-age cracking during welding or post weld heat treatment. Given the similarity between AM and welding processes, IN718 has been widely applied to the metallic AM field to facilitate the understandings of process-microstructure-property relationships. The work presented in this licentiate thesis aims to better understand microstructures and mechanical properties EBM and SLM IN718, which have not been systematically investigated. Microstructures of EBM and SLM IN718 have been characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and correlated with the process conditions. Monotonic mechanical properties (e.g., Vickers microhardness and tensile properties) have also been measured and rationalized with regards to the microstructure evolutions before and after heat treatments. For EBM IN718, the results show the microstructure is not homogeneous but dependant on the location in the components, and the anisotropic mechanical properties are probably attributed to alignment of porosities rather than texture. Post heat treatment can slightly increase the mechanical strength compared to the as-manufactured condition but does not alter the anisotropy. SLM IN718 shows significantly different microstructure and mechanical properties to EBM IN718. The as-manufactured SLM IN718 has very fine dendritic microstructure and Laves phases in the interdendrites, and is “work-hardened” by the residual strains and dislocations present in the material. Mechanical properties are different between horizontally and vertically built samples, and heat treatment can minimize this difference. Results from this licentiate thesis provide the basis for the further research on the cyclic mechanical properties of EBM and SLM IN718, which would be the focus of following phase of the Ph.D. research.

Quality Analysis of Additively Manufactured Metals

Quality Analysis of Additively Manufactured Metals PDF

Author: Javad Kadkhodapour

Publisher: Elsevier

Published: 2022-11-30

Total Pages: 858

ISBN-13: 0323886493

DOWNLOAD EBOOK →

Quality Analysis of Additively Manufactured Metals: Simulation Approaches, Processes, and Microstructure Properties provides readers with a firm understanding of the failure and fatigue processes of additively manufactured metals. With a focus on computational methods, the book analyzes the process-microstructure-property relationship of these metals and how it affects their quality while also providing numerical, analytical, and experimental data for material design and investigation optimization. It outlines basic additive manufacturing processes for metals, strategies for modeling the microstructural features of metals and how these features differ based on the manufacturing process, and more.Improvement of additively manufactured metals through predictive simulation methods and microdamage and micro-failure in quasi-static and cyclic loading scenarios are covered, as are topology optimization methods and residual stress analysis techniques. The book concludes with a section featuring case studies looking at additively manufactured metals in automotive, biomedical and aerospace settings. Provides insights and outlines techniques for analyzing why additively manufactured metals fail and strategies for avoiding those failures Defines key terms and concepts related to the failure analysis, quality assurance and optimization processes of additively manufactured metals Includes simulation results, experimental data and case studies

Solid-State Metal Additive Manufacturing

Solid-State Metal Additive Manufacturing PDF

Author: Hang Z. Yu

Publisher: John Wiley & Sons

Published: 2024-07-10

Total Pages: 421

ISBN-13: 3527350934

DOWNLOAD EBOOK →

Timely summary of state-of-the-art solid-state metal 3D printing technologies, focusing on fundamental processing science and industrial applications Solid-State Metal Additive Manufacturing: Physics, Processes, Mechanical Properties, and Applications provides detailed and in-depth discussion on different solid-state metal additive manufacturing processes and applications, presenting associated methods, mechanisms and models, and unique benefits, as well as a detailed comparison to traditional fusion-based metal additive manufacturing. The text begins with a high-level overview of solid-state metal additive manufacturing with an emphasis on its position within the metal additive manufacturing spectrum and its potential for meeting specific demands in the aerospace, automotive, and defense industries. Next, each of the four categories of solid-state additive technologies—cold spray additive manufacturing, additive friction stir deposition, ultrasonic additive manufacturing, and sintering-based processes—is discussed in depth, reviewing advances in processing science, metallurgical science, and innovative applications. Finally, the future direction of these solid-state processes, especially the material innovation and artificial intelligence aspects, are discussed. Sample topics covered in Solid-State Metal Additive Manufacturing include: Physical processes and bonding mechanisms in impact-induced bonding and microstructures and microstructural evolution in cold sprayed materials Process fundamentals, dynamic microstructure evolution, and potential industrial applications of additive friction stir deposition Microstructural and mechanical characterization and industrial applications of ultrasonic additive manufacturing Principles of solid-state sintering, binder jetting-based metal printing, and sintering-based metal additive manufacturing methods for magnetic materials Critical issues inherent to melting and solidification, such as porosity, high residual stress, cast microstructure, anisotropic mechanical properties, and hot cracking Solid-State Metal Additive Manufacturing is an essential reference on the subject for academic researchers in materials science, mechanical, and biomedicine, as well as professional engineers in various manufacturing industries, especially those involved in building new additive technologies.

Ultrasonic Methods for Characterization of Additively Manufactured Materials

Ultrasonic Methods for Characterization of Additively Manufactured Materials PDF

Author: Colin Williams

Publisher:

Published: 2022

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK →

The goal of this research is to find new noninvasive methods to certify the quality of safety-critical additively manufactured (AM) metallic parts for use in industries such as aerospace and defense. Additive manufacturing facilitates rapid prototyping, building, and repairing of custom components with increased agility, production rate, and reduced waste. A recognized barrier to the wide adoption of additive manufacturing is the lack of new approaches for AM part qualification. Our research objective is to exploit the material's linear and nonlinear ultrasonic response - which represents the measurable changes and distortion in elastic waves encountering macroscopic and microscopic defects - to establish links between microstructure and macroscale mechanical properties of AM metals. We measure linear and nonlinear ultrasonic parameters for a series of AM and wrought 316L grade stainless steel samples and compare the obtained parameters against mechanical properties of the samples measured on corresponding coupons. The samples are heat-treated to different temperatures to induce microstructural changes which alter their mechanical properties and ultrasonic response. Two sets of specimens are manufactured, one from the additive manufacturing method Laser Powder Bed Fusion (L-PBF), and the second from a traditional wrought method. Using the nonlinear ultrasonic method of Second Harmonic Generation (SHG), the acoustic nonlinearity parameter is estimated. SHG has been shown to offer a highly sensitive response to microstructural heterogeneities such as dislocations and grain boundaries. A linear ultrasonic parameter, wave speed, is also recorded with pulse-echo testing. Alongside these ultrasonic measurements, mechanical testing parameters including elastic moduli and yield strength are evaluated for the specimens. To accompany the experimental testing, a series of numerical simulations were conducted using commercial finite-element software to study the effects of randomly distributed heterogeneities on wave distortion in a controlled environment. In these simulations, randomly generated heterogeneities are scattered throughout a 2D plate with materials properties different from the bulk material. Ultrasonic wave propagation is simulated within this heterogeneous medium to investigate the effects of the heterogeneities' elastic properties, geometry, and distribution on ultrasonic signals, including distortion measured in terms of higher harmonic generation (HHG). Experimental results indicate correlations between the nonlinearity parameter and both ultimate tensile strength and yield strength, where nonlinearity generally decreases as these mechanical parameters increase, particularly in the AM samples. We hypothesize that microstructural changes in grain size and distribution through the heat treatment process influence these trends in measured nonlinearity. Additionally, substructures at even smaller length scales, such as nanoscale precipitates and dislocations affect the ultrasonic and mechanical behavior. Measurements of elastic moduli and total elongation do not exhibit trends with the nonlinearity parameter. The linear parameter, wave speed, does not correlate well with the mechanical parameters, which is attributed to its lack of sensitivity to detect changes in microscopic features. These results show promising evidence for the feasibility of AM parts qualification using nondestructive nonlinear ultrasonic testing. Results of the simulations indicate that changes in heterogeneity size, volume fraction, and material property deviations from the bulk material affect HHG to varying degrees. As expected, heterogeneities of smaller sizes and volume fractions have a less significant effect. However, at increasingly large values, changes in HHG are more pronounced, and material density and stiffness deviations from the bulk material are shown to have a larger effect on HHG. Future work includes continuing nonlinear ultrasonic testing, as well as comparing results to nonlinear resonant ultrasound spectroscopy (NRUS). New geometries and materials will be tested to expand the dataset. Microstructures will be imaged using scanning and transmission electron microscopy (SEM, TEM) and evaluate our hypotheses, and further complexity in numerical simulations will be implemented to isolate microstructural features and explore their effects on material behavior.

Standards, Quality Control, and Measurement Sciences in 3D Printing and Additive Manufacturing

Standards, Quality Control, and Measurement Sciences in 3D Printing and Additive Manufacturing PDF

Author: Chee Kai Chua

Publisher: Academic Press

Published: 2017-06-03

Total Pages: 268

ISBN-13: 0128134909

DOWNLOAD EBOOK →

Standards, Quality Control and Measurement Sciences in 3D Printing and Additive Manufacturing addresses the critical elements of the standards and measurement sciences in 3D printing to help readers design and create safe, reliable products of high quality. With 3D printing revolutionizing the process of manufacturing in a wide range of products, the book takes key features into account, such as design and fabrication and the current state and future potentials and opportunities in the field. In addition, the book provides an in-depth analysis on the importance of standards and measurement sciences. With self-test exercises at the end of each chapter, readers can improve their ability to take up challenges and become proficient in a number of topics related to 3D printing, including software usage, materials specification and benchmarking. Helps the reader understand the quality framework tailored for 3D printing processes Explains data format and process control in 3D printing Provides an overview of different materials and characterization methods Covers benchmarking and metrology for 3D printing