Matrix Models for Population, Disease, and Evolutionary Dynamics

Matrix Models for Population, Disease, and Evolutionary Dynamics PDF

Author: J. M. Cushing

Publisher: American Mathematical Society

Published: 2024-02-29

Total Pages: 293

ISBN-13: 1470473348

DOWNLOAD EBOOK →

This book offers an introduction to the use of matrix theory and linear algebra in modeling the dynamics of biological populations. Matrix algebra has been used in population biology since the 1940s and continues to play a major role in theoretical and applied dynamics for populations structured by age, body size or weight, disease states, physiological and behavioral characteristics, life cycle stages, or any of many other possible classification schemes. With a focus on matrix models, the book requires only first courses in multivariable calculus and matrix theory or linear algebra as prerequisites. The reader will learn the basics of modeling methodology (i.e., how to set up a matrix model from biological underpinnings) and the fundamentals of the analysis of discrete time dynamical systems (equilibria, stability, bifurcations, etc.). A recurrent theme in all chapters concerns the problem of extinction versus survival of a population. In addition to numerous examples that illustrate these fundamentals, several applications appear at the end of each chapter that illustrate the full cycle of model setup, mathematical analysis, and interpretation. The author has used the material over many decades in a variety of teaching and mentoring settings, including special topics courses and seminars in mathematical modeling, mathematical biology, and dynamical systems.

Chaos in Ecology

Chaos in Ecology PDF

Author: J. M. Cushing

Publisher: Elsevier

Published: 2003

Total Pages: 248

ISBN-13: 9780121988760

DOWNLOAD EBOOK →

Chaos in Ecology is a convincing demonstration of chaos in a biological population. The book synthesizes an ecologically focused interdisciplinary blend of non-linear dynamics theory, statistics, and experimentation yielding results of uncommon clarity and rigor. Topics include fundamental issues that are of general and widespread importance to population biology and ecology. Detailed descriptions are included of the mathematical, statistical, and experimental steps they used to explore nonlinear dynamics in ecology. Beginning with a brief overview of chaos theory and its implications for ecology. The book continues by deriving and rigorously testing a mathematical model that is closely wedded to biological mechanisms of their research organism. Therefrom were generated a variety of predictions that are fundamental to chaos theory and experiments were designed and analyzed to test those predictions. Discussion of patterns in chaos and how they can be investigated using real data follows and book ends with a discussion of the salient lessons learned from this research program Book jacket.

Discrete Mathematical Models in Population Biology

Discrete Mathematical Models in Population Biology PDF

Author: Saber N. Elaydi

Publisher: Springer

Published: 2024-10-26

Total Pages: 0

ISBN-13: 9783031647949

DOWNLOAD EBOOK →

This text lays the foundation for understanding the beauty and power of discrete-time models. It covers rich mathematical modeling landscapes, each offering deep insights into the dynamics of biological systems. A harmonious balance is achieved between theoretical principles, mathematical rigor, and practical applications. Illustrative examples, numerical simulations, and empirical case studies are provided to enhance mastery of the subject and facilitate the translation of discrete-time mathematical biology into real-world challenges. Mainly geared to upper undergraduates, the text may also be used in graduate courses focusing on discrete-time modeling. Chapters 1–4 constitute the core of the text. Instructors will find the dependence chart quite useful when designing their particular course. This invaluable resource begins with an exploration of single-species models where frameworks for discrete-time modeling are established. Competition models and Predator-prey interactions are examined next followed by evolutionary models, structured population models, and models of infectious diseases. The consequences of periodic variations, seasonal changes, and cyclic environmental factors on population dynamics and ecological interactions are investigated within the realm of periodically forced biological models. This indispensable resource is structured to support educational settings: A first course in biomathematics, introducing students to the fundamental mathematical techniques essential for biological research. A modeling course with a concentration on developing and analyzing mathematical models that encapsulate biological phenomena. An advanced mathematical biology course that offers an in-depth exploration of complex models and sophisticated mathematical frameworks designed to tackle advanced problems in biology. With its clear exposition and methodical approach, this text educates and inspires students and professionals to apply mathematical biology to real-world situations. While minimal knowledge of calculus is required, the reader should have a solid mathematical background in linear algebra.

Sensitivity Analysis: Matrix Methods in Demography and Ecology

Sensitivity Analysis: Matrix Methods in Demography and Ecology PDF

Author: Hal Caswell

Publisher: Springer

Published: 2019-04-02

Total Pages: 308

ISBN-13: 3030105342

DOWNLOAD EBOOK →

This open access book shows how to use sensitivity analysis in demography. It presents new methods for individuals, cohorts, and populations, with applications to humans, other animals, and plants. The analyses are based on matrix formulations of age-classified, stage-classified, and multistate population models. Methods are presented for linear and nonlinear, deterministic and stochastic, and time-invariant and time-varying cases. Readers will discover results on the sensitivity of statistics of longevity, life disparity, occupancy times, the net reproductive rate, and statistics of Markov chain models in demography. They will also see applications of sensitivity analysis to population growth rates, stable population structures, reproductive value, equilibria under immigration and nonlinearity, and population cycles. Individual stochasticity is a theme throughout, with a focus that goes beyond expected values to include variances in demographic outcomes. The calculations are easily and accurately implemented in matrix-oriented programming languages such as Matlab or R. Sensitivity analysis will help readers create models to predict the effect of future changes, to evaluate policy effects, and to identify possible evolutionary responses to the environment. Complete with many examples of the application, the book will be of interest to researchers and graduate students in human demography and population biology. The material will also appeal to those in mathematical biology and applied mathematics.

The Mathematics of Cellular Automata

The Mathematics of Cellular Automata PDF

Author: Jane Hawkins

Publisher: American Mathematical Society

Published: 2024-03-21

Total Pages: 247

ISBN-13: 1470475375

DOWNLOAD EBOOK →

This textbook offers a rigorous mathematical introduction to cellular automata (CA). Numerous colorful graphics illustrate the many intriguing phenomena, inviting undergraduates to step into the rich field of symbolic dynamics. Beginning with a brief history, the first half of the book establishes the mathematical foundations of cellular automata. After recapping the essentials from advanced calculus, the chapters that follow introduce symbolic spaces, equicontinuity, and attractors. More advanced topics include the Garden of Eden theorem and Conway's Game of Life, and a chapter on stochastic CA showcases a model of virus spread. Exercises and labs end each chapter, covering a range of applications, both mathematical and physical. Designed for undergraduates studying mathematics and related areas, the text provides ample opportunities for end-of-semester projects or further study. Computer use for the labs is largely optional, providing flexibility for different preferences and resources. Knowledge of advanced calculus and linear algebra is essential, while a course in real analysis would be ideal.

Modelling Population Dynamics

Modelling Population Dynamics PDF

Author: K. B. Newman

Publisher: Springer

Published: 2014-07-16

Total Pages: 223

ISBN-13: 1493909770

DOWNLOAD EBOOK →

This book gives a unifying framework for estimating the abundance of open populations: populations subject to births, deaths and movement, given imperfect measurements or samples of the populations. The focus is primarily on populations of vertebrates for which dynamics are typically modelled within the framework of an annual cycle, and for which stochastic variability in the demographic processes is usually modest. Discrete-time models are developed in which animals can be assigned to discrete states such as age class, gender, maturity, population (within a metapopulation), or species (for multi-species models). The book goes well beyond estimation of abundance, allowing inference on underlying population processes such as birth or recruitment, survival and movement. This requires the formulation and fitting of population dynamics models. The resulting fitted models yield both estimates of abundance and estimates of parameters characterizing the underlying processes.

Matrix Population Models

Matrix Population Models PDF

Author: Hal Caswell

Publisher: Sinauer

Published: 2006-05-10

Total Pages: 0

ISBN-13: 9780878931217

DOWNLOAD EBOOK →

This book provides a complete treatment of matrix population models and their applications in ecology and demography. It is written for graduate students and researchers in ecology, population biology, conservation biology and human demography.

An Introduction to Structured Population Dynamics

An Introduction to Structured Population Dynamics PDF

Author: J. M. Cushing

Publisher: SIAM

Published: 1998-01-01

Total Pages: 106

ISBN-13: 9781611970005

DOWNLOAD EBOOK →

Interest in the temporal fluctuations of biological populations can be traced to the dawn of civilization. How can mathematics be used to gain an understanding of population dynamics? This monograph introduces the theory of structured population dynamics and its applications, focusing on the asymptotic dynamics of deterministic models. This theory bridges the gap between the characteristics of individual organisms in a population and the dynamics of the total population as a whole. In this monograph, many applications that illustrate both the theory and a wide variety of biological issues are given, along with an interdisciplinary case study that illustrates the connection of models with the data and the experimental documentation of model predictions. The author also discusses the use of discrete and continuous models and presents a general modeling theory for structured population dynamics. Cushing begins with an obvious point: individuals in biological populations differ with regard to their physical and behavioral characteristics and therefore in the way they interact with their environment. Studying this point effectively requires the use of structured models. Specific examples cited throughout support the valuable use of structured models. Included among these are important applications chosen to illustrate both the mathematical theories and biological problems that have received attention in recent literature.

A Short History of Mathematical Population Dynamics

A Short History of Mathematical Population Dynamics PDF

Author: Nicolas Bacaër

Publisher: Springer Science & Business Media

Published: 2011-02-01

Total Pages: 160

ISBN-13: 0857291157

DOWNLOAD EBOOK →

As Eugene Wigner stressed, mathematics has proven unreasonably effective in the physical sciences and their technological applications. The role of mathematics in the biological, medical and social sciences has been much more modest but has recently grown thanks to the simulation capacity offered by modern computers. This book traces the history of population dynamics---a theoretical subject closely connected to genetics, ecology, epidemiology and demography---where mathematics has brought significant insights. It presents an overview of the genesis of several important themes: exponential growth, from Euler and Malthus to the Chinese one-child policy; the development of stochastic models, from Mendel's laws and the question of extinction of family names to percolation theory for the spread of epidemics, and chaotic populations, where determinism and randomness intertwine. The reader of this book will see, from a different perspective, the problems that scientists face when governments ask for reliable predictions to help control epidemics (AIDS, SARS, swine flu), manage renewable resources (fishing quotas, spread of genetically modified organisms) or anticipate demographic evolutions such as aging.

Population Dynamics in Variable Environments

Population Dynamics in Variable Environments PDF

Author: Shripad Tuljapurkar

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 148

ISBN-13: 3642516521

DOWNLOAD EBOOK →

Demography relates observable facts about individuals to the dynamics of populations. If the dynamics are linear and do not change over time, the classical theory of Lotka (1907) and Leslie (1945) is the central tool of demography. This book addresses the situation when the assumption of constancy is dropped. In many practical situations, a population will display unpredictable variation over time in its vital rates, which must then be described in statistical terms. Most of this book is concerned with the theory of populations which are subject to random temporal changes in their vital rates, although other kinds of variation (e. g. , cyclical) are also dealt with. The central questions are: how does temporal variation work its way into a population's future, and how does it affect our interpretation of a population's past. The results here are directed at demographers of humans and at popula tion biologists. The uneven mathematical level is dictated by the material, but the book should be accessible to readers interested in population the ory. (Readers looking for background or prerequisites will find much of it in Hal Caswell's Matrix population models: construction, analysis, and in terpretation (Sinauer 1989) ). This book is in essence a progress report and is deliberately brief; I hope that it is not mystifying. I have not attempted to be complete about either the history or the subject, although most sig nificant results and methods are presented.